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ABSTRACT

- The structure of the Reynolds stress in the near-wall region of a fully

developed turbulent pipe flow was investigated. The working fluid was glycerine,

the high viscosity of which makes the viscous sublayer much larger than in water

or air. The Reynolds number of the experiment, based on the diameter of the

pipe, was close to 9000. The 0.285 m diameter test-section is located 25 diameters

downstream of the contraction to ensure a fully developed flow. A trip ring is

used to fix the location of transition at the entrance of the pipe. The test-

section was built of acrylic to allow optical access for a laser Doppler velocimeter

(LDV). Single-point LDV measurements as close as one wall unit from the wall

were made. Agreement with previous investigations was excellent.

A two-component LDV and a one-component fiber-optics LDV were com-

bined to measure the two-point velocity correlation in the wall region. Separation

distances as large as 900 wall units in the streamwise direction and 64 wall units

in the normal direction were investigated. The effect of velocity bias on the

correlation coefficient was studied and it was found to be small in the conditions

of this experiment -7Two-dimensional maps of the correlation coefficient between

streamwise velocity ,and radial velocity were measured for 6 different distances

of the two-component LDV from the wall. The results indicate that the

turbulent structures resemble horseshoe vortices whose inclination angle to the

wall increases as their distance from the wall increases. A simple mod I of the

flow based on this interpretation was constructed. Agreement with experimental
results was very good. I.Acesslon For
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Chapter 1

INTRODUCTION

1.1 Historical Background

Ever since Prandtl developed boundary layer theory, the behavior of fluid

flows close to solid boundaries has been a primary area of research in fluid

mechanics. In particular, turbulent boundary layers have been intensively studied

because of their practical importance. However, apart from a few qualitative

results obtained through dimensional reasoning, little progress has been made.

The evolution of our understanding has been marked by three periods. In

the first half of the century, turbulence was viewed essentially as a stochastic

phenomenon, characterized by a mean velocity and a random fluctuating velocity.

The fluctuating part of the flow, consisting of a continuous range of scales, was

regarded as a turbulent fluid medium. It was seen to interact with the mean

field through the concept of eddy diffusivity (Taylor, 1915). This representation

of turbulence led in the 1940's to the development of the statistical theory of

isotropic homogeneous turbulence as a simplified but representative case. This

approach produced many important concepts. Among these, the main result

is that the behavior of small eddies is independent of the large scale turbulent

motion (Kolmogorov, 1941). Research on statistical turbulence theory has been

pursued until now (Lesieur, 1986), but its scope is limited: it is now recognized

that in practical applications, the homogeneous part of the flow does not govern

its large-scale dynamics, i.e., the dynamics of the large eddies.
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The second period began in the 1950's, when researchers noticed the

intrinsically non-homogeneous character of turbulence, e.g., the discovery of

internal intermittency by Klebanoff (1954). At that time it became clear that

the notion of a turbulent fluid medium was not adequate. Researchers began

to realize that there is no such thing as turbulence, but merely turbulent

flows, i.e., the energetic eddies are strongly dependent on the nature of the

flow itself (Townsend, 1956). However, the description and measurement of

turbulent flows still relied heavily on long-time averaging, an operation which

does not recognize the individuality of turbulent eddies. At about the same

time, the importance of the wall region for the generation of turbulence in wall-

bounded flows was uncovered. The wall region is defined as that part of the

flow where non-dimensionalization by inner variables-kinematic viscosity and

wall shear stress-leads to a universal velocity profile. Laufer (1954), in an

investigation of a fully developed turbulent pipe flow, found that the production

of turbulent energy reaches a maximum around y+ = 12. The continuous supply

of turbulent energy necessary to counteract viscous dissipation originates mainly

in this region. Throughout the 1950's, subsequent investigations confirmed the

universality of this finding.

Realizing the importance of the wall region, a group of researchers led by

Kline at Stanford University investigated it, using flow visualization. Their

discovery of quasi-deterministic structures in this region marks the beginning

of the third period, which covers the last thirty years.

1.2' Quasi-deterministic Nature of Turbulent Boundary Layer Flows

Kline and his group systematically investigated the wall region of a turbulent

boundary layer using flow visualization. Their experimental facility consisted of
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a low Reynolds number open channel flow. Kline and Runstadler (1959), using

dye injection through thin slots, were able to show that the wall region possesses

a distinct structure and a definite, non-regular, time-dependent motion. They

later employed the hydrogen-bubble technique and obtained extensive visual and

quantitative results. This effort culminated in the paper by Kline et al. (1967).

In the region 0 < y+ < 10, they observed that the bubbles were collected along

long streaks oriented in the streamwise direction. These streaks were shown to

be regions of low streamwise velocity which formed an irregularly distributed

pattern in the spanwise direction. Kline et al. attributed their presence to the

existence of pairs of counter-rotating streamwise vortices. The interaction of the

streaks with the wall region occurred through a sequence of gradual outflow,

lift-up, oscillations and final breakup with a sudden ejection of low speed fluid

from the wall. Kline et al. referred to the entire process as "bursting."

The position of the low speed streaks on the wall appeared random in time

and in space, but the visualizations indicated an average spanwise spacing of

approximately y+ = 100. The ejection process occurred mostly in the region

10 < Y+ < 30. Kline et al. (1967) suggested that bursting could be the result of

an instability mechanism in the buffer layer. They discovered that the greatest

part of momentum transport between the inner and outer layer occurred during

bursting. This means that bursting plays an essential part in the turbulence

production process.

The Stanford study was complemented by the work of Corino and Brodkey

(1969). These investigators used flow visualization to study the near wall region

of a fully developed turbulent pipe flow. They covered a large range of Reynolds

numbers, from 5300 to 52000. Their technique involved suspending solid particles

in a liquid and photographing the particle motion with a high speed motion



4

picture camera moving at the mean flow velocity. In essence, they confirmed

the findings of Kline et al. (1967), although they perceived the viscous sublayer

as essentially passive. Fluid elements were observed to be intermittently ejected

outward from the wall region. This ejection created a zone of high shear at the

interface between the low speed fluid element and high speed fluid entering from

the upstream outer region. When the ejected element entered the high shear

zone, it interacted with the outer flow to produce intense, apparently chaotic

velocity fluctuations. Corino and Brodkey (1968) identified this process with

the bursting event of Kline et al. (1967), but they did not find evidence that

ejections resulted from an instability mechanism. They also observed an event

called the sweep, in which a fluid element with a velocity close to the local mean

entered the field of view from upstream. The study showed that the number

and intensity of ejections increased with increasing Reynolds number, and that

the ejection frequency scaled with inner variables. In addition, it confirmed the

results of Kline et al. (1967) that most of the turbulent production occurs during

bursting: they estimated that the ejections account for approximately 70% of the

Reynolds stress measured by Laufer (1954).

These two studies marked the beginning of a systematic search for quasi-

deterministic structures in turbulent shear flows, and also initiated a new interest

in flow visualization techniques. Flow visualization is well adapted to situations

where spatial and temporal fluid motions occur simultaneously with random

phase. In these situations, data from a fixed sensor, such as a hot wire or a

pressure transducer, are difficult to interpret. However, flow visualization has

limitations:

* It is a qualitative technique. It has been difficult to extract reliable and

accurate quantitative information from visual data.
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" It easily leads to misinterpretation in three-dimensional and unsteady flows,

in particular when the visual data are stored in two dimensions (pictures or

video).

" Visually observed events might not be representative patterns of the flow.

On the contrary, an event characteristic of the flow might be totally missed

by the flow visualization technique.

By the beginning of the 1970's these limitations and the need for quantitative

results became apparent. Most subsequent investigations resorted to conven-

tional measuring techniques, sometimes associated with flow visualization.

The major difficulty with quantitative measurement of the flow field in the

near-wall region is its very small size. In most cases, this difficulty has been

alleviated-at least partially-by enlarging the wall region. This can be achieved

by increasing the wall length scale v,/u., i.e., either by decreasing the friction

velocity or by increasing the kinematic viscosity. Most investigators, for practical

reasons, have adopted the first solution: since the friction velocity is a decreasing

function of streamwise distance in a turbulent boundary layer, a simple way of

achieving a small friction velocity is to use a very long facility.

Rao et al. (1971) studied a turbulent boundary layer in air over a wide

range of Reynolds numbers, using hot wire anemometry. They were particularly

interested in the bursting frequency. Their burst detection method was designed

to detect the periods of large amplitude of the high-pass filtered derivative of the

streamwise velocity. They found that the mean burst frequency scales with outer

rather than inner variables and concluded that the dynamics of the wall region

of a turbulent boundary layer can be understood only on the basis of a coupling

between the inner and the outer layer.
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Kim, Kline and Reynolds (1971), after further refining the hydrogen bubble

flow visualization technique, combined it with hot wire anemometry. They tagged

the hot-wire signal when a turbulent burst was observed to pass over the hot wire.

They noticed that several ejections, as defined by Corino and Brodkey (1969),

can occur in one burst. Their results confirmed the findings of Rao et al. (1971)

that the bursting frequency scales with outer variables. They also showed that

essentially all the turbulence production occurs during bursting.

Willmarth and Lu (1972) concentrated their effort on developing a scheme

able to detect the passage of a burst from the hot wire signal itself. They studied

a turbulent boundary layer at the two Reynolds numbers of 4230 and 38000.

They noticed that the bursting process, beginning with the lift-up of a low speed

fluid element, has a characteristic signature. An event was thus said to occur

when the streamwise fluctuating velocity u, measured by a hot wire located at a

distance y+ = 16.8 above the wall, was decreasing and smaller than T u2 , where

T is a constant. This allowed them to define an indicator function:

1 when an event is detected
O(T,t) -- 0 otherwise

and the conditional average of a quantity z:

+00
f z4(T,t)dt
0
+00

f (T, t) dt
0

where t represents time. Using this method, Willmarth and Lu found that

the events detected with the above criterion make a large contribution to the

production of turbulent energy. In a subsequent article, Lu and Willmarth

(1973) modified their detection scheme, so that an event was said to occur when
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the product of the streamwise component u by the normal component v of the

fluctuating velocity was greater than a certain threshold H:

juvi > H

They showed that this criterion is a better indication of the Reynolds stress

activity. They found that the events corresponding to u negative and v positive-

second quadrant in u-v coordinates-account for 77% of the long-time average

Reynolds stress U-, while those associated with u positive and v negative-fourth

quadrant in u-v coordinates-account for 55% of UF (the first and third quadrants

have a negative contribution to the Reynolds stress). Therefore they identified

the second quadrant event with a burst and the fourth quadrant event with a

sweep. Additionally they found that the bursting frequency scales with outer

variables. From an analysis of their results, they proposed that the features of

a turbulent boundary layer flow could be explained by the convection past the

measuring station of a characteristic pattern such as hairpin vortices.

Blackwelder and Kaplan (1976) examined the wall structure of a turbulent

boundary layer using conditional sampling of signals from hot wire rakes. Their

detection technique is based on the observation that a burst corresponds to

a period of intense turbulent activity. The Variable Interval Time Averaged

(VITA) variance defined as:

Var(T,t) 2 - ( dt

(T-t/2 ( -t/2

should therefore present a peak at the passage of a burst. They defined an

indicator function of the form:

(T,t) if Var> U2

{O otherwise
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Using conditional averaging in a manner similar to that of Willmarth and Lu

(1972), they observed a high degree of coherence of the turbulence structures in

a direction normal to the wall. They found that in regions of strong streamwise

velocity deficit, the normal velocity is directed outwards whereas in regions

of strong streamwise velocity excess, the normal velocity is directed inwards.

Thus these two patterns were respectively associated with ejections and sweeps.

Blackwelder and Kaplan confirmed the previous finding that the conditionally

averaged Reynolds stress is an order of magnitude greater than its conventionally

averaged value.

The work of Head and Bandyopadhyay (1981) marked an important step

in our understanding of the dynamics of turbulent boundary layers. Their

investigation of the structure of the outer region of a turbulent boundary layer

provided new clues on the relationship between inner and outer layers. Using

flow visualization, they studied in great detail the outer region of a turbulent

boundary layer, for Reynolds numbers ranging between 500 and 17500. They

injected smoke at the origin of the boundary layer so that the entire layer

was visually marked. They found that the boundary layer is made up very

largely of elongated hairpin vortices or vortex pairs originating in the wall region.

These hairpin vortices are inclined at an average angle of 450 to the wall, have

spanwise dimensions scaling with inner variables and a length scaling with outer

variables. In view of these results, they suggested that the counter-rotating

vortices observed in the wall region at low Reynolds number could be the legs of

the vortex pairs they observed in the outer region.

Johansson and Alfredsson (1982) studied a fully developed turbulent chainel

flow for Reynolds numbers varying between 13800 and 48900. They investigated
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in detail the character of the VITA detection technique introduced by Black-

welder and Kaplan (1976). They showed that this technique does not allow one

to define a unique burst frequency, because it depends strongly on the threshold

level. However, by using the same threshold level at different values of the

Reynolds number, they deduced that the burst frequency in the outer region

scales with outer variables. In a subsequent article, Alfredsson and Johansson

(1984) found that the correct time scale for bursting in the near wall region is

the arithmetic mean of the inner and outer scales, i.e., it is of mixed type, even

very close to the wall. They interpreted this result from the mixed character

of bursting, which results from the interaction of the outer layer and the inner

layer.

Blackwelder and Haritonidis (1983) measured the burst frequency in a

turbulent boundary layer for Reynolds numbers ranging from 1000 to 10000.

They found a strong effect of the sensor size on the measured frequency and

attributed previous discrepancies in the scaling law to the use of sensors which

were too large. When their sensor had a length smaller than l+ = 20, their data

showed that the bursting frequency always scaled with inner variables. Willmarth

and Sharma (1984) and Luchik and Tiederman (1987) later confirmed these

results. Thus the more recent investigations, with smaller and better probes,

seem to confirm the inner scaling hypothesis.

A different approach, used in recent years, is to study a laminar flow in

which some of the features of a turbulent boundary layer are reproduced. In these

experiments, no background noise due to the outer flow is introduced, so that flow

visualization and burst detection are easier to carry out. Thus some researchers

have tried to generate laminar boundary layers which mimic artificially the

large scale structure of turbulent boundary layers. Accarlar and Smith (1987)
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generated hairpin vortices in a laminar boundary layer by placing a hemispheric

protuberance on the wall. They used dye injection and a hydrogen-bubble wire

to visualize the flow pattern downstream of the hemisphere. Many of the visual

patterns observed in this experiment closely match those observed in turbulent

boundary layers. Hot-wire measurements also indicate a close resemblance

between the streamwise velocity profiles and those in a turbulent boundary layer.

These observations support Head and Bandyopadhyay's hypothesis (1981) that

the outer region of a turbulent boundary layer is filled with random arrays of

hairpin vortices.

Swearingen and Blackwelder (1987) studied the growth, breakdown and

transition to turbulence of counter-rotating vortices generated via the G~rtler

instability along a concave wall. They determined that the low-speed regions

between the vortex pairs create strongly infiexional profiles of the streamwise

velocity. The oscillations which develop on these profiles were found to correlate

better with the spanwise, not normal, velocity gradient. These results can

be interpreted in relation to theoretical studies by Orszag and Patera (1984),

Jang et al. (1984) and Landahl (1986), who have showed that the primary

instability mode of the normal velocity profile is damped. However, when this

primary instability mode is excited by a finite disturbance, it can give rise to a

secondary instability developing in the spanwise direction. Nonlinear analyses of

this second mode of instability yield equilibrium solutions which look very much

like the counter-rotating vortex pairs observed in turbulent boundary layers, and

in Swearingen and Blackwelder's experiment.

Numerical simulation represents an appealing alternative by which to study

turbulence. Due to computer limitations, however, only low Reynolds number

simulations are possible. Moin and Kim (1982) performed large eddy simulations
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to compute the flow field in a turbulent channel flow at a Reynoids number

of 13800. The database generated by their calculations was used to perform

a number of analyses of the flow. Simulating the hydrogen-bubble flow

visualization of Kline et al. (1967), they were able to reproduce almost exactly

the same visual patterns. Kim (1983), using a spatial version of the VITA

technique developed by Blackwelder and Kaplan (1976), determined that the

ejection process is associated with a localized adverse pressure gradient, with

simultaneous lift-up of the streamwise vortices. Moin (1984) confirmed the results

of Head and Bandyopadhyay (1981), and showed that the vorticity vector in

the outer region is preferentially inclined at an angle of 45' to the wall. He

also found that these vortices contribute significantly to the long-time average

Reynolds stress. Because the spatial resolution of the calculation may not have

been fine enough to resolve all the scales in the wall region, these results should

be interpreted with care. In spite of its cost, the numerical simulation strategy

is an effective approach, and much of its potential remains to be explored.

1.3 Toward a Rigorous Definition of Turbulent Structures

The main difficulty associated with the study of large structures in turbulent

shear flows lies in the ambiguity associated with their definition. An additional

difficulty comes from the unsteady and three-dimensional character of turbulent

flows, which makes interpretation of qualitative and quantitative data hazardous.

Indeed, according to the conditional averaging method used, different flow

patterns emerge.

To avoid these problems, Lumley (1967) proposed the proper orthogonal

decomposition method, which naturally defines the most energetic structures in
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a non-homogeneous turbulent flow. The method looks at the turbulent flow field

as a statistical realization of a random vector field. The dominant structure of

the flow is defined as one which maximizes in a mean-square sense its correlation

with the random field (this is also referred to as the Karhunen-Loeve expansion

in statistics). The problem can be reformulated as an eigenvalue problem and

solved for the dominant structure. The method was first applied to find the

dominant eddies in a turbulent wake (Payne, 1966) using the experimental data

of Grant (1959). Application of the method to the wall region of a turbulent

boundary layer was accomplished by Bakewell (1966), Moin (1984) and Herzog

(1986).

Bakewell (1966) performed his measurements in a fully developed pipe flow

using glycerine as the working fluid. The kinematic viscosity of glycerine is

about 200 times that of water, thus making the wall region large enough for

using hot-film probes down to a y+ smaller than 1. The Reynolds number

of the flow was 8700. He carried out extensive measurements of two-point

correlations of the streamwise velocity using a pair of hot-film anemometers.

The missing components of the correlation tensor were computed using a mixing-

length hypothesis. He used these data to extract the large eddies following the

proper orthogonal decomposition technique. Bakewell found that the dominant

structure consists of a pair of counter-rotating vortices with a strong outflow of

low-speed fluid between the two vortices. This structure had a long streamwise

extent (up to Ax + = 1000) and a spanwise extent of typically Az + = 100. Such

a picture of the flow matches closely the description of the near-wall region by

Kline et al. (1967).

Moin (1984) applied a two-dimensional version of Lumley's technique to a

large-eddy simulation database. He found a dominant characteristic eddy very
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similar to Bakewell's experimental result. This eddy contains a significant portion

of the total turbulent kinetic energy and makc3 an important contribution to

turbulence production.

Herzog (1986) extended Bakewell's work by measuring the streamwise and

circumferential components of velocity using two pairs of split-film anemometers.

Using the symmetry properties of the correlation tensor and the incompressibility

condition, he was able to compute all the components of the correlation tensor.

The typical eddy found by Herzog is a pair of counter-rotating rolls with their

centerlines about 60 wall units apart, rising almost linearly at an angle of

approximately 50 with the wall. However, some problems related to the use

of hot films in glycerine were encountered in this investigation. Corrosion on the

split film surface caused a temporal drift of their response. Another difficulty

concerned the presence of air bubbles which stuck on the sensors.

Lumley's method has the advantage over other techniques that it does not

require any subjective interpretation. However, it has two important drawbacks:

" It requires a vast amount of data.

" The dynamics of the flow is lost in the averaging process because, in practice,

the spatial correlations are computed through time average. Therefore the

picture obtained by this method should not be interpreted as a typical

instantaneous view of the flow. The method merely supplies a set of functions

on which the second-order statistics, and in particular the mean turbulent

kinetic energy of the flow, are best captured (Brown, 1960).

The question of whether the method is well adapted to capture the dynamics

of the flow is still open. Sirovich (1987) claims that the Karhunen-Loeve
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expansion provides a practical, "in a sense optimal," description of the attractor

of the motion in the phase space. There is some evidence to support this claim.

Sirovich and Rodriguez (1987) examined the Cinzburg-Landau equation in the

chaotic regime. They compared the results of a numerical solution based on a

spectral method, with the results of a Galerkin approximation using only the first

three modes of the Karhunen-Loeve expansion. Indeed, the power spectrum and

the Poincar6 section obtained from the Galerkin approximation fall neatly on top

of those from the numerical solution. In another numerical experiment, Aubry

et al. (1988) considered a finite-dimensional description of the wall region of a

turbulent flow using the set of eigenfunctions obtained experimentally by Herzog

(1986). The dynamics of their model appears to be in many respects similar to

the visual observations of previous researchers. In particular, a "bursting event"

is observed beyond a critical value of the Reynolds number.

Goldshtik (1982) proposes a different approach to identify structures in

turbulent flows. First he points out that Lumley's method becomes less

interesting in the case of homogeneous fields: in this case the spectrum is

continuous and the Karhunen-Loeve exoansion leads to the classical Fourier

expansion; however, large turbulent structures can be observed even in the

case of homogeneous fields (e.g., Harris et al., 1977). Further, the Karhunen-

Loeve expansion does not supply any information concerning the dynamics of the

flow; on the contrary, it dilutes this information during the averaging procedure.

Goldshtik's theory is based on the assumption of small overlap of the turbulent

structures. The specific character of the function that serves as a structure can

be determined by finding the solution of a classical boundary value problem.

This approach seems very promising, experimentally and theoretically. It has

been applied to the study of the Lorenz equations with some success (Goldshtik,
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1982). Further work seems necessary before it can be applied to the study of

fully developed turbulence.

1.5 Objectives of This Study

Thus, in spite of the enormous effort devoted to the understanding of the

flow in the wall region, the structure of turbulence is still poorly understood.

The relationship between the differents events that have been observed-

streaks, bursts, sweeps...-is not clear. Most of all, it seems that these

observations, rather than help theoreticians, have made their task all the more

complicated. It may be that the complexity of the flow has diverted the attention

of experimentalists from some of the questions of essential importance, like

momentum transport. This quantity has been clearly linked to the bursting event

(Kline et al., 1967), but the spatial structure of the turbulent eddies carrying the

momentum has not been investigated. The goal of this work was to investigate

the structure of these eddies in the wall region of a turbulent boundary layer,

with a particular emphasis on their relationship to the Reynolds stress.

Velocity measurements were carried out in the glycerine tunnel of the Applied

Research Laboratory at The Pennsylvania State University. Two-point velocity

correlations were measured using a two-component laser Doppler velocimeter

(LDV) coupled with a one-component fiber-optics LDV. The spatial correlation

between the streamwise and the radial velocity was measured in the radial plane

of the pipe, between the wall and y+ = 64. Complete maps of the correlation

were established and the form of the dominant eddies in this region of the flow

was deduced from the measurements.
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Using information from the measurements, a model of the flow in the near-

wall region was constructed. Predictions of turbulence quantities were made and

compared with experimental results. Agreement is very good.

Details of the experimental apparatus and preliminary measurements are

described in chapter 2. The experimental results are presented and discussed in

chapter 3. The model of the wall region is developed in chapter 4. Chapter 5

includes the conclusions of the study and recommendations for future work.
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Chapter 2

PROCEDURE OF THE INVESTIGATION

2.1 Introduction

In this chapter, we will present the experimental facility and the measuring

techniques used in the course of the investigation. The experimental facility is the

same as described by Bakewell (1966) and Her7'-0 (1986) in their doctoral theses.

Whereas these two investigations were performed with hot-wires (Bakewell, 1967)

or split-films (Herzog, 1986), the present work used laser Doppler velocimetry for

velocity measurements. In addition to being non-intrusive-a definite advantage

when one is dealing with glycerine-the LDV does not suffer from such problems

as probe interference, corrosion, and a difficult calibration process. Some

problems exist, of course, and they will be explained in the course of this chapter.

The measurements not directly relevant to the structure of turbulence will also

be presented. It should be mentioned that the results labeled "model" in the

figures will be explained in chapter 4.

2.2 Experimental Facility

The experimental facility is a closed circuit tunnel which uses glycerine as

the working fluid. A summary of the physical properties of glycerine is given

in table 1. Due to the large value of the kinematic viscosity of glycerine, the

viscous sublayer is thicker than in water or air, thus making measurement in the

near-wall region more practical than in conventional facilities.
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TABLE 1

Physical Properties of Glycerine at 33.5 0 C.

Water content 4.5%

Kinematic Viscosity V 202.5 10-6 m 2 /s

Fluid Density p 1232 kg/m 3

Specific Heat Capacity Cp 2430 Nm/(kg °C)

Coefficient of thermal expansion 0 0.000615

Refractive Index n 1.4667

Surface Tension a 6.208 10 - 2 N/m

Thermal Conductivity k 0.292 N/(sec 'C)

Thermal Diffusivity a 9.75 10- 1 m 2/sec

Prandtl Number Pr 2076
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The facility (figure 1) contains 8200 liters of commercially available glycerine.

The pump is a 75 kW constant speed (900 rpm) centrifugal pump located in the

bottom leg of the facility, downstream of the test section.

The settling chamber is equipped with screens to prevent separation and

reduce turbulence at the entrance, and a honeycomb to suppress large-scale

vorticity. It is followed by a 16 to 1 contraction to the test-pipe. The test-

pipe is 7.6 m long and 0.285 m in diameter, with the actual test-section located

25 diameters downstream of the contraction. The inside surface of the pipe is

honed to a 16 jiinch rms finish. The location of the boundary layer transition is

fixed at the entrance of the test-pipe by a trip-ring with a tooth height equal to

10 mm; this gives a trip Reynolds number approximately equal to 313.

Since the pump speed can not be varied, the only practical way to adjust

the Reynolds number is by changing the viscosity. The viscosity of glycerine was

measured by the Cannon Instrument Company (Boalsburg, PA), which provided

the following equations for the calculation of the viscosity of glycerine V (in m 2 /s)

as a function of the temperature T (in°C):

ln(InZ) = 24.98023 - 4.071499691n(T + 273)

Y=Z-0.7

v = (Y - ezp(-0.7487 - 3.295Y + 0.6119Y 2 - 0.3193Y 3 ))10 - 4

Figure 2 is a plot of glycerine viscosity vs temperature. As can be seen,

glycerine viscosity is a strong function of temperature. This property suggests

a temperature control of the Reynolds number, which is actually achieved with

the help of a counter-flow heat exchanger. Glycerine is removed from the tunnel

through holes in the tunnel wall, located in the vertical leg downstream of the
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test section (figure 1). Glycerine temperature is monitored with a thermistor

immediately downstream of the test-section. The temperature is adjusted by

varying the flow rate of cooling water through the heat exchanger. Reinjection of

the cooled glycerine into the tunnel occurs through two rows of tubes immediately

downstream of the intake. Further mixing by the pump insures a uniform

temperature of the glycerine.

To replicate the viscosity of glycerine in Herzog's experiment, i.e., v =

202.5 10 - 6 m 2/s, the temperature of the tests was chosen equal to 33.5°C. This

choice insured that all other test parameters were equal to those of previous

investigations. Since the operating temperature of the facility is about 13'C

above ambient temperature, a thermal gradient could develop in the radial

direction, thus causing significant changes of viscosity across the test-pipe. The

Prandtl number of glycerine is larger than 2000 (table 1), which keeps heat

exchange between glycerine and the pipe wall very small. Bakewell (1967)

measured the temperature gradient at the wall and found that it could be made

negligible by insulating the facility with thick foil-faced fiberglass.

The power input from the pump is fixed by the motor. Thus the wall

shear-stress at a given location, and for a given flow regime, depends little on

temperature; temperature changes affect mainly the flow-rate.

2.3 Wall Shear-stress Measurement

The pressure drop in the test-pipe is measured through an array of 22 Foxboro

pressure transducers regularly distributed between the contraction and the test-

section. The signal from the transducers was passed through a multiplexer and

sent to the VAX 11/782 of the Garfield Thomas Water Tunnel via an IEEE bus.
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Calibration of the transducers was accomplished with an Ametek calibration

instrument.

Figure 3 represents the pressure drop in the test-pipe at the operating

temperature of 33.5°C. The pressure drop becomes linear only a few diameters

downstream of the contraction, indicating that the large-scale turbulent flow is

fully developed in the test-section. In the near-wall region, where the energy

spectrum is narrow, we can expect all scales to have reached an equilibrium

(Comte-Bellot, 1963).

Application of the conservation of momentum in the fully developed portion

of the flow allows calculation of the wall shear-stress:

RdP
S= 2 x

Figure 4 represents the wall-shear stress in the fully developed part of the test-

section as a function of temperature. The transition of a laminar to a turbulent

regime is observed between 29°C and 31°C. As expected, in a given flow regime,

no significant variation of rT occurs as temperature is modified. The friction

velocity u, is defined as:

U 7-w

at 33.5°C, its value is 0.40±0.08 m/s. The viscous length scale defined using this

value of u, and the viscosity of glycerine is:

V
I1,= - = 0.51 mm

and the viscous frequency scale:

2
, = 790 Hz

V
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2.4 Bulk Velocity Measurement

The bulk velocity is obtained by measuring the static pressure drop P1 - PO

across the nozzle. To accomplish this, an additional pressure transducer was

installed in the settling chamber, immediately before the contraction. The flow

in the contraction experiences a strong acceleration, thus making the boundary

layer very thin. We can therefore neglect viscous effects, and apply Bernoulli's

equation between this location and the first pressure tap at the entrance of the

test-pipe. With conservation of mass, the bulk velocity is obtained as:

,2(Po - )

where A 0 and A 1 are the cross-sectional areas in the settling chamber and the

test-pipe respectively. Figure 5 represents the bulk velocity as a function of

temperature. As opposed to the wall shear-stress results of Figure 4, the bulk

velocity varies monotonically with temperature. The bulk velocity at 33.5°C was

found to be U.,, = 6.78 ± 0.1 m/s. An upper bound for the size of the largest

eddies is given by the diameter of the pipe. Therefore the frequency scale of

the iargest eddies of the flow can be estimated using the bulk velocity and the

diameter of the pipe:

fL = -- = 24 HzD

An estimate of the Kolmogorov frequency in the center of the pipe is given by

Bakewell (1966):

fk Dv 272Hz

This frequency is about one third of the viscous frequency in the wall region.

Since this result is based on ai order-of-magnitude analysis, it might not be

significant. However it indicates that the viscous time scale at the wall is probably

smaller than the Kolmogorov scale in the pipe core. Experimental investigation
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of the wall region thus requires not only better physical resolution, but also better

frequency resolution.

Knowledge of the bulk velocity provides another check that the flow is fully

developed. The Blasius formuld linking the Darcy friction factor A to the

Reynolds number Red in a fully developed pipe flow (White, 1974) gives:

A = 0.3164Red"
/ 4

where:
8 rw

A -

Solving for the friction velocity u, gives the following expression:

Ur = 0.1989UaRed- 11  (2.1)

At 33.5 0 C, this gives u, = 0.43 m/s, in good agreement with the reference value

calculated from the pressure drop. The small difference might result from the

disturbance introduced by the trip ring, which is located near the first pressure

transducer. Streamline curvature effects, due to the large size of the trip ring

compared to the diameter of the pipe, probably significantly affect the static

pressure measurement there.

The operating conditions of the experimental facility are presented in table

2. The friction velocity was computed from the pressure gradient measurements.

2.5 Velocity Measurement Instrumentation

A two-component laser Doppler velocimeter (LDV) and a one-component

fiber-optics LDV were used for the velocity measurements. In order to provide

optical access into the pipe, a specially designed acrylic test-section was built
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TABLE 2

Operating Conditions of Experimental Facility

Operating Temperature T 33.5 °C

Pipe Diameter D 0.285 m

Mean Velocity U.. 6.34 m/sec

Reynolds Number Re 8923

Friction Velocity U, 0.40 ± 0.08 m/sec

Viscous Length 1 0.51 fmn
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(figure 6) to replace the previous stainless steel test-section. The inside surface

of the test-section was machined to an rms surface finish of 20 pinch, i.e., less than

0.001 viscous wall unit. The index of refraction of acrylic (n = 1.49) matches

closely that of glycerine (n = 1.479) so that the deflection of the laser beams

at a glycerine-acrylic interface was very small, particularly since the beams were

almost normal to the surface. To avoid beam deflection caused by pipe curvature,

a flat window was added to one side of the pipe and the space between the window

and the pipe was filled with glycerine. The side-walls holding the window on the

test-section were also made of plexiglas so that optical acces. through the top

and the bottom parts of the pipe were possible. Calculation of the beam angles

inside the pipe was made by applying Snell's law. The index of refraction was

approximated by n = 1.49. This approximation is of the same order of magnitude

as the inaccuracy in the index of refraction of acrylic, which may be caused by

inhomogeneities and wavyness of the test-section surface. This represents an

1.2% error in the estimation of the distance of the probe from the wall.

Simultaneous measurement of the three components of velocity was one of

the goals of this study, and we initially hoped that the three-component LDV

system of the Garfield Thomas Water Tunnel would give us this capability. This

LDV system is a two-colour, five-beam backward-scatter system, and is equipped

with three counter processors. It uses the blue line and green line of an Argon-ion

laser. A detailed description of the system is given in Appendix A.

Measurement of the radial component of velocity, the "on-axis" component,

turned out to be impractical. An analysis of the effect of beam misalignment on

the on-axis component, given in appendix B, shows that this component is very

sensitive to misalignment, making alignment of the beams extremely difficult to

obtain.
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A second and more serious difficulty comes from the large amount of noise

present in the on-axis component of velocity. A simplified analysis of this problem

is also given in appendix B. The analysis predicts that the noise present in the

on-axis component v is proportional to the noise present in other components, u

or w. The factor of proportionality k has the form:

k =V 1
w 2sin(¢/2)

In our case, v and w are of the same order of magnitude and 0 is small, therefore

k varies like 1/4, which represents a severe limitation on the accuracy of the

system. To assess experimentally the influence of this factor on the measurement

of the radial component, velocity measurements were performed in the glycerine

tunnel at low temperature when the flow in the test-pipe is laminar. Whereas the

standard deviation of the streamwise and circumferential components of velocity

were typically between 0.5 and 0.6%, the radial component consistently gave

a value greater than 5%. This result is in agreement with the result of the

theoretical analysis, which predicts a tenfold increase in the amount of noise

present in the on-axis component compared to other components. Therefore

measurement of quantities such as turbulence intensity, Reynolds stress and

higher-order statistical moments involving the radial velocity component were

excluded. Attempts to measure the radial component of velocity in the turbulent

regime gave unrealistic values for the Reynolds stress, thus confirming the results

of the analysis.

As a consequence, we decided to use the standard two-component LDV sys-

tem. With this system, we can measure only the streamwise and circumferential

components of velocity. The optical arrangement is almost unchanged, except

for the removal of the center green beam.
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The standard two-component LDV is a backscatter system. It was observed

that when the coincidence window (see appendix A) was set at the average size

of a burst, the data rate was of the order of 100. Even though single-point

measurement does not require a high data rate, the ability to resolve the largest

frequencies in the flow was considered important. Moreover, it was anticipated

that such a data rate would be too small for the measurement of two-point

velocity correlations.

The main problem of backscatter systems is the presence of a high level of

noise, with a signal to noise ratio typically over 50 times less than in forward-

scatter systems. A burst detection scheme based on amplitude sets a limit on the

maximum data rate attainable, because the gain must be kept low enough so that

the background noise is rejected by the processor. In the case of a backscatter

system with a low signal to noise ratio, this constraint is particularly harmful.

An economical solution to increase the data rate is to use a forward scatter

arrangement. Another advantage of forward scatter LDV systems is that they

are not as sensitive to the presence of a wall, a crucial advantage in this study.

Therefore a window was added on the other side of the pipe to allow optical access

to a forward-scatter receiving optics module. An xyz translation stage was built

and installed on a platform behind this new window. The photomultipliers were

attached to the translation stage, and an additional receiving lens completed

the receiving module. The axis of the receiving optics was set at approximately

100 to the horizontal, and 100 to the vertical, which allowed a more accurate

identification of the beam crossing, without sacrificing too much scattered light.

Small air bubbles in suspension in glycerine constituted the seeding. The way

air gets into the tunnel is not clear, but seems to be linked with the filling of the

tunnel. The tunnel has a tendency to leak glycerine back into the glycerine tanks,
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and it is thus necessary to refill it a little bit almost every day. This operation

is thought to be the major cause of air bubbles in the tunnel. Whenever the

bubble concentration in the tunnel is too small to provide an acceptable data

rate, air is purposely introduced into the tunnel from a pressurized air line. The

size of the bubbles was estimated visually from holograms of glycerine taken

immediately after its removal from the tunnel. The diameter of the bubbles,

measured by holography, varied between 20 and 50 jum ,i.e., 0.02 to 0.1 viscous

wall units. Hinze (1955) gave a theoretical estimate of the size of gas bubbles in a

turbulent liquid; he found that the maximum bubble size stable against breakup

by turbulent eddies is:

where a is the surface tension, and c the rate of turbulent energy dissipation.

In the conditions of our experiment, this formula gives a maximum bubble size

of 571um, in good agreement with the experimental result. Because the density

of air is negligible compared to that of glycerine, the bubbles follow the flow

perfectly. It can also be shown that convection and viscous forces on the bubbles

are much larger than buoyancy forces. Attempts to use commercially available

seeding particles with a well known size distribution centered around 41Lm did

not increase the data rate. This result is attributed to the presence of the larger

bubbles in the flow, scattering light more efficiently than the small particles.

Since the gain in the processors is set to avoid saturation of the electronics,

signal from the smaller particles remains below detection level.

The Doppler signal observed on the oscilloscope had the characteristic shape

of a burst in fringe mode laser anemometry, with an apparently good signal to

noise ratio. This was only apparent because the electronic modules downmixing

the signal after the photomultiplier (see appendix A) also remove the pedestal.
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It is thus impossible to look at properties of the original Doppler signal such as

its visibility. It is often believed that fringe mode laser Doppler anemometry can

not work when the scattering particles are much larger than the fringe spacing.

In the present case, the particle diameter is an order of magnitude larger than the

fringe spacing. Calculations by Adrian and Earley (1975), using Mie scattering

theory, show that "good signal to noise ratio can be obtained with particles much

larger than the fringe spacing." The absence of experimental information on the

signal visibility did not allow us to verify this claim. However, some runs were

made after glycerine was passed through a filter with a 5 Mm mesh size built in an

auxiliary circuit of the facility. Commercially available particles (4 jim particles

from TSI) were used; the single point statistics from these runs did not exhibit

any significant difference with the runs made without filtering the glycerine.

The data rate obtained with the new LDV configuration typically varies

between 1000 and 10000, depending on the location of the probe and the gain

setting. By setting the gain so that the data rate was larger than 2000, the

highest frequencies present in the flow could be resolved-recall that the largest

frequency in the pipe have been estimated around 800 Hz. However, to avoid the

simultaneous presence of particles in the probe volume, the data rate was kept

less than 3000. Near the wall, where the velocities are of order u, it correspon&

to the presence of a particle in the probe volume approximately 25% of the time.

The LDV system is set up on a breadboard able to translate in all three

directions. The position of the breadboard was chosen so that the LDV probe

inside the pipe would lie in the horizontal plane passing through the pipe

centerline, with its motion in the radial direction. T*ie two other degrees of

freedom of the breadboard were locked. A linear actuator with an accuracy of

10 um was used to monitor the radial position of the breadboard. The motion
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of the breadboard was accomplished with an anti-backlash screw. An eye-piece

aligned with the optical axis allowed to position the beam crossing on the pipe

wall, with an accuracy estimated at the length of the probe, i.e., 0.6 mm. Due

to the change of index of refraction across the interface, a displacement y of

the breadboard in the radial direction corresponded to a displacement n y of the

probe inside the pipe, where n = 1.49 is the index of refraction of acrylic. Note

that the fringe spacing df is not changed across the interface. If A and '0 are

respectively the wavelength of the beams and their angle, the fringe spacing is

given by:
A

df 2sin(/2)

Since sin(0/2) and A follow the same law across the interface, df remains

unchanged.

2.6 Mean Velocity Profile

Figure 7 shows the mean streamwise velocity normalized by the centerline

velocity, as a function of the wall distance normalized by the pipe radius. Data

obtained by Herzog (1986), using a split film in the wall region and a pitot tube

in the center of the pipe, are shown for comparison. The location of the wall was

found by taking the intersection of the least-square fit of a straightline with the

first five points with the horizontal axis. The shift at the origin was Ay = 0.65

Mm, about one viscous length. In addition, the slope of the straight line gives

the velocity gradient at the wall, which in turn can be converted into the friction

velocity ut,; the value u, = 0.43 m/s was found, in good agreement with the

reference value u, = 0.40 m/s computed from the pressure gradient.

The friction velocity was also calculated from the velocity distribution in the

log-region using a least-square fit to the following universal profile (Tennekes and
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Lumley, 1972):
U+ - y+, when y+ < 5.0

u+  2.5 ny + + 5.5, when y+ > 30.0

The origin of ordinates was taken equal to that previously computed. The friction

velocity was found equal to u,- = 0.39 m/s. Figure 8 is a plot of the velocity in

the near-wall region in semi-log coordinates, non-dimensionalized with this value

of the friction velocity.

The bulk velocity was calculated by integrating the velocity profile across the

pipe. The value U., = 6.34 m/s was found, in good agreement with the value the

value of the mean velocity at the quarter radius (Tennekes and Lumley, 1972).

This last method yields the value U., = 6.44 m/s. The Reynolds number based

on the diameter and U., = 6.34 m/s is Red = 8923. The value of the friction

velocity obtained by substituting Ua, = 6.34 m/s in equation 2.1 is u, = 0.405

m/s, in excellent agreement with the value computed from the pressure drop.

2.6 Measurement of Velocity Correlation

The measurement of the two-point velocity correlations was accomplished

with the two-component LDV complemented by a one-component fiber-optics

LDV. A detailed description of the setup is given in appendix A. For convenience,

we denote the probe of the two-component system, which moved only in the

radial direction, as the "fixed" probe while the probe of the fiber-optics system

is called the "moving" probe. Two traverse mechanisms were designed for the

moving probe. Both provided translation in all three directions, rotation about a

line parallel to the axis of the pipe, and rotation about a direction parallel to its

own optical axis. The range of motion was 450 "nm in the streamwise direction

and 35 mm in the radial direction.
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In the initial setup, the beams of the moving probe were shot into the pipe

horizontally, i.e., parallel to the axis of the two-component system. In this

configuration, the vertical range was 300 mm. By rotating the probe head

about its own axis, it was possible to measure either the streamwise or the

circumferential velocity component. This setup created a serious problem close

to the wall, where the velocity gradient is large over the length of the probe

volume (1m = 2.4mm = 5 viscous units). The velocity gradient bias can be

approximately corrected when the streamwise velocity is known, but since the

fiber-optics system gives access to only one component of velocity, no correction

for the radial velocity can be used.

In the second configuration, the beams of the moving probe are shot into

the pipe vertically through the top window. In this case, the vertical range

was only 35 mm. The two components of velocity measurable in this setup are

the streamwise and the radial components. The diameter of the probe volume

(din = 0.11 mM) is small so that the velocity gradient bias in the radial direction

can be neglected. In the circumferential direction, the probe length is 2.4 rm,

approximately 5 viscous units. However, since the radius of the pipe is much

larger than the length of the probe, the velocity change in the direction of the

probe is small. Thus the velocity gradient bias in the circumferential direction

is negligible. This setup was used for the remaining of this study.

The procedure for the measurement of the two-point velocity correlations

was as follows:

9 The fixed probe was moved to a new location in the radial direction,

corresponding to one of the following distances from the wall: y+ = 2, 3,

6, 9, 12, 18.
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* For each of the fixed probe locations, the moving probe was moved to a new

position with a streamwise separation Ax+, and a radial separation Ay + .

The separation distances were increased logarithmically. The increments

near the wall and near the probe were always chosen as small as possible,

usually Ax+ = 2 and Ay + = 1. For example, when the fixed probe was at

y+ = 12, the positions relative to the fixed probe were:

Ay + = -11, -10, -8, -4, -2, -1,0,1,2,4,8,16,32,52

giving absolute positions of:

y+ = 1,2,4,8,10,11,12,13,14,16,20,28,44,64

The maximum distance of the moving probe from the wall can not exceed

y+ = 64.

The streamwise separation was as large as the setup allowed, i.e., Ax + = 830.

This is about 50% larger than in Herzog's experiment (1986), and corresponds

approximately to the observed length of the wall streaks. The maximum radial

separation of the two probes, 64 wall units, is also 50% larger than that of Herzog.

This allowed us to identify the turbulent structures further away from the wall.

Even in a simple geometry, like a pipe flow, it is difficult to locate precisely

the probe volume of an LDV. The procedure described previously for the

determination of the position of the fixed probe allowed the present measurements

to be performed with an accuracy estimated at one viscous length. For the

correlation measurements, the moving probe was first aligned with th . fixed

probe. Coincidence of the two probes was checked with a telescope. Then the

moving probe was moved to its new position relative to the fixed probe. At

large separation, when the correlation coefficient varies slowly with distance,
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inaccuracies in the alignment procedure are not critical. At zero or small

separation, when the correlation coefficient varies substantially with distance,

the effect is more important. However, Reynolds stress measurements presented

in the next chapter do not seem to be affected by this problem and compare well

with previous measurements.

The length of the fiber-optics probe (1, = 5 wall units) represented another

potential difficulty, namely the lack of accuracy in correlation meastrements.

Experimental results presented in the next chapter showed that this was not a

major problem. Presumably this is due to the fact that the integral length scale

in the circumferential direction (about 40 wall units) is much larger than the

size of the probe. Blackwelder and Haritonidis (1983) found that the maximum

probe size in the wall region should not exceed 20 wall units. The size of the

fiber-optics probe, measured in wall units, is smaller than this limit; in fact it is

smaller than any hot wire or hot film probe used in previous investigations in air

or water, because of the use of glycerine.

The data rate from the one-component fiber-optics LDV rarely exceeds 500.

Therefore the limiting factor for the data rate in the two-point correlation

measurements was the data rate from the fiber-optics system. Velocity bias

was an obvious concern in this study. The large turbulence intensity near the

wall, and the low data rate are two factors that are usually considered to increase

velocity bias (Edwards, 1981). A simple model was devised to study the effect of

velocity bias on the mean velocity and correlation coefficient. The model and the

numerical results are presented in appendix C. Our conclusions are that while

the mean velocities can be significantly affected by velocity bias ,up to 50% of

the RMS value), the correlation coefficient is not affected by more than 4%.
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2.8 Data Analysis

A software package was written for the analysis of the LDV data. Computer

memory limitations restricted the number of data points to less than 6000 per

channel for every run. Immediately following the end of a run, velocity statistics

were calculated and displayed for inspection. They include:

" Test, run number and position of the fixed probe volume.

" Data rate, and minimum and maximum time between data points.

* Mean velocity, standard deviation, turbulence intensity, skewness and flatness

factor for each channel.

" The three cross correlation coefficients: 1-2, 2-3, and 1-3.

" Minimum and maximum velocity values on each channel.

" Low and high filter values for each channel.

Two types of filters were available. The first filter, the crudest, was used

to discard the -data well out of the range of a realitic velocity distribution. To

accomplish this, the velocity distribution of each channel was plotted on the

computer terminal and a low and a high filter value were manually entered. The

new statistics were computed after discarding the points outside the filter limits.

The second step consisted of a two-dimensional filter based on the fact that

the u-v (or v-w, or u-w) distribution has an elliptical shape in the u-v plane.

From the second-order statistics of the u-v distribution it is easy to compute

the principal axes of the distribution as well as their length. A Gaussian

velocity distribution would be completely characterized by these quantities--or
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equivalently, the "1-sigma" ellipse they define-and the velocity statistics could

be estimated with a given confidence level.

In reality, the u-v distribution is not Gaussian, so filtering can not be

performed this way. A filtering ellipse was specified by expanding the 1-sigma

ellipse by a factor k. The coefficient k was chosen between 6 and 9, a conservative

value compared to the values usually mentioned in the literature (between 4 and

6 for the one-dimensional filter). All points located outside this ellipse were

discarded. To check the validity of the procedure, a two-dimensional contour

plot of the velocity distribution was displayed on the computer terminal, with

the rejected points identified by a cross (figure 9). The effectiveness of the filter

was left to the appreciation of the user. This two-dimensional filter is particularly

efficient when noisy data, located away from the rest of the distribution in the

u-v plane, appears acceptable to a one-dimensional filter.

A similar three-dimensional filter, based on the complete 3 x 3 Reynolds stress

tensor, is feasible. However, our experience shows that visual inspection of the

filtered data is an essential step in the procedure, and visualizing the velocity

distribution in three dimensions is not an easy task. Therefore no effort was

spent in this direction.

The rejection rate depends on the location of the probes. Very near the wall,

up to 3 or 4% of the data can be rejected; away from the wall, this rate is always

lower than 1%. Each measurement most often involves taking 4000 data points

at a given location, which means that usually more than 3950 points are used for

the calculation of the statistics. The effect of the one-dimensional filter is most

felt on the estimate of the standard deviation, skewness and kurtosis factors,

while the two-dimensional filter affects especially the cross-correlations.
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Chapter 3

EXPERIMENTAL RESULTS

3.1 Introduction

In the previous chapter, we presented the facility, the experimental technique

and some basic measurements-pressure drop, flow-rate and mean velocity

distribution. This chapter will emphasize experimental results relative to the

structure of turbulence in the near-wall region. Higher-order moments of velocity

and two-point correlations will be presented. Since this study focuses on the

behavior of turbulence in the wall region, the non-dimensionalization of the data

has been done systematically in terms of the inner variables v and u, (obtained

from the pressure drop measurements).

First, single-point measurements are presented and compared with previous

data. The Reynolds stress results are emphasized, because they provide a good

test of the problems encountered during correlation measurements. Two-point

correlation measurements are detailed in a following section. The interpretation

of these results is then ,eesented.

3.2 Single-point Measurements

3.2.1 Velocity Statistics

Standard deviation of the streamwise, circumferential and radial components

of velocity are presented on figures 10, 11 and 12, respectively. These data were
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obtained either from single-point measurements ("LDV data"), or from the two-

point measurements described in the following section ("Correlation data"). The

two sets of data are in good agreement with each other.

Herzog (1986) measured the streamwise and circumferential RMS velocities

in the glycerine tunnel at the same Reynolds number. He used split films

(length of the films_0.5 wall unit) with an inverse calibration procedure which

is described in his thesis. Laufer measured the three components of velocity in

a pipe at Reynolds numbers of 50,000 and 500,000. The fluid was air and hot

wires (length of the wires-5 wall units) were used for the measurements. In

the logarithmic region, the present results are in good agreement with Laufer's

data, while Herzog's data seem slightly too high. In the viscous sublayer, the

RMS streamwise and circumferential velocity are slightly higher than Laufer's

and Herzog's data. The small difference could be caused by velocity gradient

bias due to the size of the two-component LDV probe: its length is about one

wall unit, representing a mean velocity variation of approximately u, = 0.4 m/s

across the probe; this is the order of magnitude of the difference between the

present results and Herzog's data. Very near the wall, Laufer's hot wire data

are low, either because his hot wire was too large or because it might have

been contaminated by the proximity of the wall, producing lower values of the

circumferential RMS velocity. The present study finds the peak of the streamwise

RMS velocity near y+ = 17, in agreement with the results of Laufer (1954) and

Herzog (1986).

The radial RMS velocity distribution (Figure 12) is compared with Laufer's

and Eckelmann's data (1972). Eckelmann performed his measurements in an

oil channel at a Reynolds number of 8200. Agreement with his results is good.

Beyond y+ = 20, the present data reach the asymptotic value v/u,- = 1 faster
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than Laufer's. Near the wall, the present data are slightly smaller than in

previous investigations although the distribution is linear, in agreement with

theoretical estimates.

The distribution of the skewness factor in the wall region is shown on

figure 13. Because of the axial symmetry of the flow, the skewness of the

circumferential component of velocity must be zero. Indeed, the measured value

is small, typically less than 0.2 in absolute value. The skewness of the streamwise

component is positive close to the wall and negative away from the wall. This

behavior can be easily interpreted; close to the wall, the velocity distribution

is centered on a small value, bounded immediately below by zero and bounded

above by a comparatively very large value. In contrast, away from the wall,

the velocity distribution is centered on a large value, bounded above by the

maximum velocity, and bounded below by a comparatively very small value.

On the pipe centerline, the skewness must be zero for symmetry reasons. The

distribution of the skewness of the radial velocity is very different: after starting

at zero close to the wall, it reaches a negative peak between y+ = 10 and

20, and returns to zero past this region. The peak corresponds to the buffer

zone, where most of the turbulent production takes place, and is probably due

to the intermittent character of the motion. The negative sign indicates that

the distribution is skewed towards negative values of the radial velocity. Thus

excursions far from zero are stronger towards the wall than away from it. In

the same region, the streamwise velocity distribution is also skewed towards

negative values, indicating that excursions far from the mean are stronger for

negative fluctuations than for positive fluctuations. This result is somewhat

surprising, because the Reynolds stress involves excursions away from the mean

by streamwise and radial velocity fluctuations of opposite signs. These behaviors
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are in no way incompatible, though, and can be interpreted in the following

simple fashion: the two-dimensional u - v distribution, in aodition to presenting

a strong negative correlation in the direction of the major axis (i.e. the line

u = -v), is skewed in the direction of the minor axis (i.e. the line u = v),

towards the third quadrant.

The distribution of the flatness factor shown on figure 14 confirms the

previous remarks in many ways. The streamwise and circumferential velocity

components have large values close to the wall and decrease to the Gaussian

value of 3 in the logarithmic layer. The large value of the flatness factor near the

wall can be attributed to the intermittent character of the velocity field in the

wall region. The flatness of the radial velocity exhibits a strong peak between

y+ = 8 and 15, indicating a strongly non-Gaussian behavior in this region. But

again, as for the skewness, it seems to possess a Gaussian distribution in the

viscous sublayer, unlike the streamwise and circumferential velocities. These

results indicate that the combination of the wall and predominant viscous effects

exert a strong damping on this component below y+ = 8. Thus excursions of

the radial velocity far from its mean value are unlikely very close to the wall,

unlike what is observed for the streamwise velocity. Intermittent behavior of u

and v are usually linked in the near-wall region, but the present results show that

below y + = 8, u is intermittent while v is not: That is the intermittent behavior

of v does not reach as far into the viscous sublayer as that of u. The asymptotic

behavior of the Reynolds stress close to the wall-which will be shown to vary

like y 3, not y 2 , in the next section-should probably be attributed to this feature

of the radial velocity close to the wall.
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3.2.2 Single-point Correlation results

Two methods were used to determine the ability of the system to measure

velocity correlations.

In a first step, the two probes were placed at the same point and the

fiber-optics LDV was oriented so as to measure the streamwise velocity. The

correlation coefficient between the streamwise velocities measured from the two

systems thus fell between 93% and 99%, a satisfactory result considering that it

is a second-order statistic.

As a second method of checking the accuracy of correlation measurements

we kept the two probes at the same location but rotated the fiber-optics probe

so that it could measure the radial velocity. We were thus able to measure

the Reynolds stress distribution, and to compare it with that computed from

the mean velocity distribution across the pipe (Laufer, 1954). Combining the

continuity equation with the streamwise and radial momentum equations written

in cylindrical coordinates, one gets:

(I - (3.1)
UT ( U

The mean velocity gradient can be estimated using the mean velocity distribution

shown on figure 8. Using the value of u, given by the pressure gradient, tie non-

dimensional value of the velocity gradient d can be computed. Substitution

in equation 3.1 thus provides the Reynolds stress.

To compute the Reynolds stress distribution very near the wall, the mean

velocity was assumed to follow the asymptotic form:

U+ = Y + + ay +2 + ipyl + _Yy+ 4 + byl+ + O(Y+ 6 )
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where a, /, -, and 6 are constants to be determined. Substitution into equation

3.1 yields:

-- 1 + 2a)y' - 33Y, 2 - 4yy 3 - 56Y+ 5

It can be shown that the coefficients of y+ and y+ 2 in this equation must cancel.

Chapman and Kuhn (1986) expand the instantaneous fluctuating velocities in a

Taylor series near the wall:

u = al (z, z, t)y +

w = bj(X,z,t)y +

By substitution in the continuity equation, one gets:

a-9V = aj o + Ozb l Y + '"

9Y 49dX az/

Integration and multiplication by u yield:

Uv ab1  +-,v = 5- + a+ ..
2 X 4z 2

Since the flow is fully developed in the streamwise direction, the first term inside

the parenthesis is zero. Therefore:

b__, y(3.2)--U'-'5=al z 2 + "'(32

The leading term of the Taylor expansion for the Reynolds stress near the wall

is thus proportional to y3 and we must have:

1
2R +

13=0

-y and 6 can be found by computing a least square fit to the experimental mean

velocity profile of figure 8 for y+ varying between 0 and 10. -y was found equal to
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-3.052 10- 4 , and 3 to 1.67 10- 5 . The final result for the Reynolds stress behavior

near the wall is:

- U --- 1.22 10-3y + - 8.35 10-y + 4

The Reynolds stress distribution beyond y+ = 5 was computed using a cubic

spline of the mean velocity profile, and taking its derivative. Comparison of

the computed distribution with the measured distribution of Reynolds stress is

shown in figure 15. The two curves are in good agreement. Eckelmann's data are

also shown on this figure. Agreement with his data is very good. Repeatability

tests yielded a scatter of about 10% in the value of the Reynolds stress.

The good agreement between theoretical and experimental results obtained

in our measurement of single-point auto- and cross-correlations proved the

effectiveness of the correlation measuring technique using two LDVs.

3.2.3 On Calculating the Reynolds Stress from the Mean Velocity Distribution

Some care must be taken in calculating the Reynolds stress distribution from

the mean velocity distribution. In the following, we show how the misuse of

Spalding's formula, or a small error in the estimate of the friction velocity can

lead to incorrect results close to the wall.

Using Spalding's semi-empirical formula (1961) relating y+ and U+ in a

turbulent boundary layer, together with the momentum equation 3.1, gives an

erroneous result. Spalding's formula is:

Y+ = U+ + C- - -
U +  (.U+ ) 2  (ICU+) 3\

2 6,

where r. is the von Karman constant and B is the additive constant appearing in

the law of the wall. A Taylor series expansion of this expression around y+ = 0
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provides an expression for the velocity as a function of the distance from the

wall:

U + = Y+ e +4 + O(y+ 5 )
24

Now taking the derivative of this expression, we get:

dU - e -KB 3 + O(y 4 ) (3.2)

dy +  6

Substituting in equation 3.1, we find for the Reynolds stress near the wall:

UV RY+ + ++ O(Y+ 4 )

U 2 6

According to this result, the Reynolds stress should change sign near the wall.

This erroneous conclusion is due to the inapropriate use of Spalding's formula in

a flow with a pressure gradient. A first-order term y+ should be added to the

formula to take into account the pressure gradient.

Durst et al. (1985) performed Reynolds stress measurements in a pipe and

found negative Reynolds stress near the wall. This result is incorrect, as well as

the theoretical explanation for it: the Taylor series for the mean velocity they

used in equation 3.1 included only one term, whereas it should include terms

up to fourth order, because terms up to third order cancel out. It is shown in

the following that their experimental result can be explained by an inaccurate

determination of the friction velocity. For example, if it is assumed that the

measured friction velocity differs from the actual friction velocity by a relative

error c, the non-dimensionalized distance and velocities thus obtained are:

+ 1 U
(1 + U,

and

Y+ = (1 C )"
V'
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The mean velocity gradient computed from figure 8 is then:

dU) 1 dU+

d /camp = (1 + C)2 dy+

Substitution into equation 3.1 yields:

:(9v- 1 y+ 1 dU +

u2 =c1mp+ (1+C) 2 dy+

After expansion with respect to E, this equation becomes:

y+ dU +  dU + ,-U2 [ R+ dy+ 12-T +O( )

T comp d++

The absolute error on the Reynolds stress is thus proportional to the mean

velocity gradient. Since this quantity reaches its highest value at the wall, this is

where the effect of inaccuracies in the estimation of u, is the most sensitive, and

an estimate of the friction velocity smaller than the actual value can produce

erroneous negative values of the Reynolds stress near the wall. Extreme care

should be taken in the measurement of the friction velocity when formula 3.1

used for the estimation of the Reynolds stress distribution near the wall.

3.3 Two-point Correlation Measurements

Two-point correlations have been measured across the wall region, for six

locations of the fixed probe: y+=2, 3, 6 , 9, 12 and 18. In every case, the

angle 0 characterizing the circumferential separation was zero, i.e. the moving

probe stayed in the horizontal plane passing through the centerline. The moving

probe was oriented to measure the radial component of velocity. Since the

correlation between ci .cumferential and radial velocity is zero in this plane, only
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the streamwise component of velocity was measured with the fixed probe. The

correlation coefficient which was measured is thus:

~~ 0) ,.,(o,y o)v( y* + yo)Rj('Ax+, Ay', 0) = U(,Y- )V( ,0
\ u'2 VV_2

To our knowledge, this quantity has never been measured in the viscous sublayer

and buffer layer. Herzog (1986) could not measure it directly and computed its

Fourier transform from the Fourier transform of the components R 13 and R 23

using the continuity equation. His computations were not available to us.

At zero separation, R 1 2 is equal to the non-dimensional Reynolds stress, i.e.,

the term which represents turbulent momentum transfer from the mean flow in

the Reynolds averaged equations. Therefore R 1 2 provides a measure of the size

of the eddies by which this transfer occurs. In the following of the discussion, we

will refer to these eddies as the Reynolds stress eddies.

The correlation coefficient R 12 is a statistical quantity which gives an average

picture of the Reynolds stress eddies. Pathological situations might exist where

the average picture given by the correlation coefficient is not representative of

the individual elements that have been used to compute it. As pointed out by

Willmarth (1978), the correlation may thus hide rather than reveal the physics

of the flow. This could be the case in the wall region, where many seemingly

different events have bee,- observed and classified. However, there are also reasons

to believe that the correlation coefficient should give a fair picture of the Reynolds

stress eddies in the wall region. The universal appearance and scaling of the

turbulent eddies in a turbulent boundary layer suggests that the flow, on the

average, is not as complicated as flow visualization, or even a hot-wire signal

would suggest. The visual observations of Head and Bandyopadhyay (1981)

in the outer part of a turbulent boundary layer, for example, show that the
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structure of the boundary layer is on the average made of horseshoe or lambda

vortices, thus much simpler than originally thought. In addition, not all eddies

contribute equally to R 12; in fact it has been shown that most of the Reynolds

stress production comes from bursts and that the contribution of other types

of eddies is much smaller (Kline et al., 1967). These observations thus make it

likely that the correlation coefficient R 12 is a fair representation of the Reynolds

stress eddies.

Interest in the correlation measurements is two-fold. On the one hand, one

of the most important problems in turbulence is the spatial characterization of

turbulent eddies. This can be seen in the fact that turbulence models have

to be tuned to every flow situation they are supposed to "predict," because

turbulence reacts differently to different types of boundary conditions. On the

other hand, most researchers agree that practical models will have to rely on

statistical averaging for some time to come. Thus from the point of view of

theoreticians, the measurement of the correlation coefficient is useful because it

tells how, on the average, turbulence spatially adjusts to the presence of the wall.

Some experimentalists argue that the only way to understand the mechanisms

of turbulence is to look at individual eddies. It is true that looking at

individual eddies helps to characterize turbulence. Unfortunately, it seems to be a

subjective approach which asks almost as many questions as it answers. In fact,

the statistical and the deterministic approaches complement each other, their

common goal being to find an "average deterministic turbulent process." Our

understanding of turbulence is neither purely deterministic, nor purely random.

The statistical approach we have followed in this study does not let us identify

directly the structures contributing to the correlation coefficient. However,
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observation of the contour plots provides a number of clues which, combined

with visual observation of other authors, suggest a possible interpretation which

will be explained after the following presentation of the data.

The calculation of R 12 involves the measurement of three quantities: u, v,

and their correlation ii'V. The relative accuracy of the u and v measurements

is estimated at 10%. In addition to depending directly on u and v, the two-

point correlation also depends on the spatial accuracy of the probe separation,

and on the temporal coincidence of every data point, as determined by the

coincidence window. Due to these additional sources of error, the relative

accuracy of the two-point correlation UT was estimated at 20%. Consequently,

the relative accuracy of the R 12 measurements was estimated at 40%. This

estimate is very conservative, and includes inaccuracies due to systematic errors.

For each position of the fixed probe, i.e., for each contour map, precautions

were taken to ensure repeatability of the correlation coefficient measurements.

The isocorrelation lines-the information of real interest to us-are thus more

accurate than the numerical value associated with each line.

The results are presented in figures 16, 17, 18, 19, 20 and 21 for positions of

the fixed probe equal to y+ =2, 3, 6, 9, 12, and 18, respectively. The absolute

value of the correlation coefficient is plotted in the form of contour plots. The

horizontal axis represents the streamwise separation and the vertical axis the

distance from the wall. The y-axis is greatly magnified compared to the x-axis.

Note that the position of the fixed probe is indicated on the plots by a small arrow

on the y-axis, and the successive positions of the moving probe is indicated by

round symboh.
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In all cases, separations larger than 500 wall units produced correlation

coefficients smaller than 5%. This value is below experimental uncertainty. Since

little information was added by extending the contour plots to a larger beparation,

the maximum separation shown on the plots is 500 wall units. The correlation

coefficient was not measured for negative values of the streamwise separation.

Extrapolation of the results to the ieft of the y-axis, seems to indicate that

the correlation coefficient vanishes quickly in the region of negative streamwise

separation. However, it would be useful to study this further.

The first observ- -on concerns the scaling of the Reynolds stress eddies. As

pointed out by Bradshaw (1978), the length scales of the shear-stress producing

motion should be proportional to the distance from the wall. It can be observed

from the contour plots, that the Reynolds stress eddies remain attached to the

wall, thus satisfying the classical local scaling argument which is fundamental in

the derivation of the law of the wall.

The streamwise extent of the Reynolds stress eddies seems to be smaller than

that of the counter-rotating vortices described by B3akewell (1966) and Herzog

(1986). These authors found that the wall vortices extend over a length of at

least 1000 wall units in the streamwise direction. The size of the Reynolds stress

eddies, as would be defined for example by an integral length scale, is smaller.

Since the maximum correlation does not arise for zero separation, it is difficult

to define a physically meaningful integral length scale; we will thus base our

reasoning on the extent of the contour lines. As the fixed probe is moved away

from the wall, the 25% correlation contour lines extend to smaller and smaller

distances, from Ay + = 300 at y-- = 2 to Ay+ = 150 at y+ = 18. By comparison,

in the vertical direction, the size of the Reynolas stress eddies varies little, and

remains of the order of 50 wall units. The consequence of these results is that
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the aspect ratio of the Reynolds stress eddies changes considerably across the

wall layer, from a very elongated streamwise structure in the viscous sublayer

to an elliptical structure with an aspect ratio close to 3 at the bottom of the

logarithmic layer.

A surprising result concerns the position of the maximum of R 12. In all cases,

the maximum is attained at a non-zero separation distance. Previous correlation

measurements, further away from the wall, did not exhibit this feature (e~g.

Sabot, 1976), possibly due to the lack of resolution of the probes. Moreover, as

the position of the fixed probe is changed, the length and inclination of the vector

separating the location of the fixed probe from the point of maximum correlation

are significantly affected. Figure 22 shows the variation of the inclination angle of

this separation vector, estimated visually from the contour maps-thus possibly

subject to a significant error. The angle varies almost linearly with the distance

of the fixed probe from the wall. The eddies in the viscous sublayer are almost

parallel to the wall, while those at the bottom of the logarithmic layer are inclined

at an angle close to 56' with the wall. Physical limitations did not allow us to

extend these measurements further away from the wall, but it is likely that the

value of the inclination angle at y+ = 18 is close to the asymptotic value reached

in the outer layer. This angle is slightly larger than the value of 45' inclination

angle of the hairpin vortices observed by Head and Bandyopadhyay (1931). We

will come back later to this result.

Figure 23 represents the distance between the fixed probe and the point

of maximum correlation as a function of the distance of the fixed probe from

the wall. This distance decreases as the fixed probe is moved away from the

wall, and reaches an asymptotic value equal to about 15 wall units. Note

that the radial separation remains of the same order of magnitude while the
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strearnwise separation becomes an order of magnitude smaller for fixed probe

location between the wall and y' = 9. This might be due to the increase of the

inclination angle of the Reynolds stress eddies.

The value of the correlation, although subject to a large uncertainty, is also

of interest. Figure 24 represents the variation of the maximum of R 12 with the

position of the fixed probe. The distribution of R 12 starts between 25 and 30% at

the wall, increases to 55 to 60% between y+ = 9 and 12, and decreases to between

35 and 40% at y+ = 18. The location of the maximum, between y+ = 9 and

12, also corresponds to the location of the sharpest peak: the correlation quickly

decreased in this region. These results indicate that the greatest coherence is

achieved for positions of the fixed probe between y+ = 9 and 12.

One remark should be made concerning the contour plots of the correlation

coefficient. In almost all figures, there is a horizontai spike throughout the

domain at y+ -- 5, and a vertical spike at x + - 25. Nadine Aubry (private

communication) noticed the same phenomenon in Herzog's results (1986). The

occurrence of these spikes in the two sets of data, with totally different measuring

techniques seems to exclude the possibility of an experimental error. They

probably result from a peculiarity of the experimental facility.

3.4 Interpretation of the Results

First, let us emphasize that the correlation R 12 is independent of the sign

and magnitude of each individual velocity component, even though it depends

on the sign and magnitude of each component relative to each other. Thus the

contour lines in figures 16 to 21 simply indicate the extent of the eddies, not their

strength.
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The continuity of figures 16 to 21 suggests that the correlation plots all

represent the same structure. As we have seen, the Reynolds stress eddies

are characterized by their inclination angle, which increases with their distance

from the wall. The axisymmetry of the pipe implies that the average eddy is

symmetric with respect to the plane of measurement. In a two-dimensional

flow, the maximum value of the correlation coefficient can only occur when the

two probes are at the same location. Thus the non-zero separation between

the fixed probe and the point of maximum correlation observed in the present

measurements can only be interpreted by a three-dimensional structure. The

point of maximum correlation is the point where the radial velocity is most

consistently correlated with the streamnwise velocity at the fixed probe location;

for example, when the streamwise velocity fluctuation at the fixed probe location

is large and negative, the radial velocity at the point of maximum correlation

is on the average large and positive. In contrast, the correlation coefficient for

zero separation is smaller, i.e., the radial velocity follows the trend of the point

of maximum correlation, but with a smaller magnitude; for example, on the

average, low streamwise velocity fluid does not move away from the wall as

fast as fluid located slightly downstream of it and further away from the wall.

The average Reynolds stress eddy thus induces at this point a large streamwise

velocity fluctuation with little effect on the radial velocity, while inducing a

large radial velocity and little streamwise velocity fluctuation at a point located

downstream and further away from the wall. From figure 23, we see that beyond

a certain distance from the wall, the separation between these two points is

approximately constant, i.e., the two points seem attached to each other. Very

close to the wall, the structure is very elongated; further ;.way from the wall, it

is inclined to the wall.
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An attractive interpretation of these observations involves a horseshoe or

lambda vortex, with its tip located at the point of maximum correlation (figure

25). The negative streamwise velocity fluctuation is created by the uplift of

low velocity fluid from between the legs of the vortex. At the same time, the

interaction between the tip of the vortex and the wall moves the vortex tip away

from the wall. The combination of these two simultaneous motions creates a

negative correlation coefficient with the form shown on figures 16 to 21.

Let us examine this interpretation in detail. Figure 26 shows how the

horseshoe vortex would contribute to the correlation coefficient. It is a sideview

of a vortex, with its legs trailing in the viscous sublayer. The sense of rotation

of the vortex is the same as that of the spanwise vorticity created by the wall.

The action of the vortex tip is two-fold: locally, it induces a motion of rotation

around itself, toward the wall downstream of it and away from the wall upstream

of it; in addition, its interaction with the wall makes it move away from the wall.

The action of the vortex legs is to lift low streamwise velocity fluid from between

them, while at the same time pushing high velocity fluid towards the wall on the

sides of the horseshoe vortex. The streamwise distance over which the vortex

legs are active is much larger than that of the vortex tip.

Let us assume that the two probes are such that the fixed probe is between

the legs of the vortex, at the point where the streamwise velocity defect is largest,

while the moving probe is at the vortex tip. We now show that this arrangement

of the probe produces a large contribution to the correlation coefficient. As the

vortex tip approaches the moving probe, the fixed probe begins to sense the

low streamwise velocity induced by the vortex legs. The radial velocity induced

by the vortex tip starts negative, and as the vortex tip is swept by the moving

probe, becomes positive and returns to zero. Since the streamwise velocity at the
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fixed probe has not changed sign, the contribution to the correlation coefficient is

zero. At the same time, the vortex tip experiences a radial motion away from the

wall, i.e., a positive radial velocity, induced by its interaction with the wall; this

motion contributes to the correlation coefficient with the correct negative sign.

Thus the convection of the horseshoe vortex past the two-probe pattern creates a

negative correlation globally. Other arrangement of the two probes with respect

to each other will contribute less to the correlation coefficient because the radial

velocity there will be smaller. Thus the maximum correlation is produced when

the fixed probe is between the legs of the vortex and the moving probe at its tip.

If the probes are between two horseshoe vortices, then the fixed probe sees

a positive streamwise velocity fluctuation induced by the vortices legs, while

the moving probe sees a negative radial velocity imposed by the uplift of the

neighboring vortex tips, and conservation of mass. Globally, the contribution to

the correlation coefficient is again negative, though probably smaller than that

from inside the horseshoe vortex, because not as coherent. Note that one-point

studies (Lu and Wilmarth, 1973) determined that the stronger uv event is in the

second quadrant, i.e. u negative and v positive. This situation corre:2onds to

having the two probes between the legs of the vortex, and is in agre. nent with

our interpretation.

Our results indicate that the regions of large streamwise velocity fluctuation

and large radial velocity are distinct. For example, regions of low streamwise

velocity are not active in the radial direction. This remark is consistent with

observations of low velocity streaks by Kline et al. (1967). Note that the

structures moving hydrogen bubbles into streaks are not necessarily as long as the

streaks. Indeed our results seem to indicate that the structures which transport

momentum from the wall are not long streamwise vortices, but spanwise vortices.
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Streamwise vortices as found by Bakewell (1067) and Herzog (1986) are present-

they are the legs of the horseshoe vortices- but they are much weaker than the

tip vortices.

The motion of the horseshoe vortices away from the wall explains why the

inclination angle shown on figure 22 increases as the distance of the fixed probe

from the wall increases. The fact that the inclination angle reaches values larger

than 45 ° is somewhat surprising, because Head and Bandyopadhyay (1981)

unambiguously showed that the preferred inclination angle of the horseshoe

vortices is 45'. However, their picture of the horseshoe vortices clearly shows

that the vortex tip is bent in the upstream direction. This would correspond in

our measurement to an angle larger than 45° .

The connection between our interpretation and the bursting phenomenon is

difficult to clarify, but several points are worth mentioning. As pointed out by

Kline et al. (1967), if bursts result from an inflexional instability, this instability

must occur in the buffer layer, not in the viscous sublayer. This is confirmed by

our mearurements, because the correlation coefficient remains small in the viscous

sublayer. The largest correlation coefficient (figure 24) occurs when the tip of the

vortex is around y - 23; this is where bursting has been observed in visual and

hot-wire investigations. Because the random motion observed during bursting

does not contribute to the correlation coefficient, the burst does not appear in

the contour plots as a separate entity. Conditional averaging techniques would

be necessary to further investigate the spatial structure of the bursts and their

connection to the present data.

The interpretation of the correlation results is in good agreement with flow

visualization results of Kline et al. (1967) in the wall region, and Head and
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Bandyopadhyay (1981) in the outer layer. The former authors suggested that

the streamwise vortices could be the legs of the horseshoe vortices they had

observed in the outer layer. The present results support this idea, but emphasize

the importance of the vortex tip in the buffer layer.
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Chapter 4

A MODEL OF THE FLOW

IN THE VISCOUS SUBLAYER

4.1 Introduction

The goal of this chapter is to present a simple model of the flow in the

viscous sublayer. Most existing models (Einstein and Li, 1956; Hanratty, 1956;

Sternberg, 1962) do not incorporate the existence of the low speed streaks. The

study by Hatziavramidis and Hanratty (1978) used visual observations of the

flow in the viscous sublayer to simplify the equations and choose physically

plausible boundary conditions. They obtained a set of equations which was

solved numerically. Their results were in good qualitative agreement with

experimental results. Detailed simulations of the flow in the wall region were

recently performed by Chapman and Kuhn (1986) and Azab and McLaughlin

(1987).

Our goal in devising the model presented in this chapter was to study the

behavior of the correlation coefficient close to the wall. The major difficulty

is trying to connect a totally deterministic model with statistical experimental

results. The approach we have followed is simple-minded, but the results it

provides are surprisingly good. We have been able to predict with satisfactory

accuracy the distribution of the mezn velocity and turbulent intensity up to

y+ = 25 with very little empirical input. The un!y constants required are the

spanwise period of the counter-rotating vortices, the height of their ce aters, and

the RMS-value of the radial velocity at this height.
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This model tries to reproduce the qualitative picture of the flow in the near-

wall region as can be drawn, for example, from the flow visualization of Kline et

al. (1967). The present experimental results have been used in determining the

boundary condition. The model assumes a weak coupling between the flow in

the streamwise direction and the flow in the cross-plane direction.The flow in the

cross-plane direction is assumed to be purely two dimensional, and is represented

by a pair of counter-rotating streamwise vortices. This assumption is based on

the findings of Bakewell (1966) and Herzog (1986). They determined that the

first eigenmode of Lumley's proper orthogonal decomposition consists of a pair

of counter-rotating vortices with a length much greater than their cross-stream

dimensions. The vortices are assumed to be steady, which means that we neglect

their interaction with each other and with the wall. The calculation uses a low

Reynolds number approximation. The form of the boundary condition provides

an exact analytical solution to this problem. The velocities thus computed in the

cross-plane are substituted into a simplified form of the streamwise momentum

equation. The resulting linear partial differential equation is solved numerically

for the streanwise velocity. The velocity statistics are computed by assuming

that the counter-rotating vortices fill the wall region and occur at random

locations in the spanwise direction.

4.2 Calculation of the Flow in the Cross-plane

We assume that the counter-rotating vortices fit into a rectangular box of

width W and height H. Inertial forces in this box are assumed much smaller than

viscous forces and are thus neglected. This approximation may be questionable,

because the local Reynolds number varies like y+ 2 in the viscous sublayer.

However, our goal is only to obtain a velocity field that satisfies the boundary
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conditions and the continuity equation. By doing so, we neglect the dynamics,

but the kinematic constraints are satisfied. Even though the cross-plane flow in

the buffer layer is probably poorly modeled, this approach provides satisfactory

results in the viscous sublayer.

Let the streamfunction 41(z,y) be defined by:

w = -Ty and v = 4r

We look for a solution of the following Stokes problem:

= 0 (4.1)

between z = 0 and W, and y = 0 and H, with the following boundary conditions:

- no-slip condition at the wall: %P = %Py = 0 at y = 0

- symmetry condition on the sides of the domain: q/ = q. = 0 at z = 0 and

z=W

- no spanwise velocity: %Fs = 0, and a sinusoidal normal velocity:

I, = VCos (W)

at y = H, where Ve is the maximum amplitude of the normal velocity on top

of the domain.

Equation 4.1 is linear, and can be solved by expanding the solution in the

following form:

4, (Z' Y) = V, E f, (y) sin (Mrz
The boundary condition at y = H rnstricts the sum to the term rn = 1 only, sc.

that:

91(z,y) = -ef(iy) sin ( )
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Substitution of this expression into equation 4.1 gives the following equation

for f:

()4 f -2 (~2~ 1 +j(v) -

We look for a solution to this equation of the form:

4

F= ft ef
i=1

where A is one of the roots of the equation:

There are two double-roots:

A i 7T
H

The constants fi are determined by applying the boundary conditions. To

simplify the algebra, the function f is expressed in terms of the hyperbolic sine

and cosine functions:

f(y) = AWsinh (7r-1) +BWcosh (7-1) + Cysinh (7r-) + Dy cosh 7r-)

Application of the boundary conditions at y = 0 yields B = 0 and:

D=-rAQ J

and at y = H:

C r in~ (W\
C = A sinhr + 7rcosh7r kiH

and:
1 sinh7r + 7r coshir
r sinh2 7r - r2 0
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Finally %P (z, y) can be expressed as:

4(zy)= A [7r Y) cosh (7r 1) - (E (-E) + 1) sinh (7r) IV Vesin (7r~

(4.2)

where:
7r2 sinhir

E = -+ h 2.3763sinhr + 7rcosh~r

Figure 27 shows the streamlines corresponding to this solution. W was chosen

equal to 80 wall units and H to 30 wall units, as found experimentally by Bakewell

(1966). The streamline pattern is similar to that of Bakewell.

Let us assume that the counter-rotating vortices occur at random positions

in the spanwise direction (Kline et al., 1967), and that they fill the wall region

so that each vortex pair stands immediately next to another. Then the statistics

of v and w obtained by long term averaging, and those obtained by averaging in

the spanwise direction are equivalent. Bakewell (1967) and Herzog (1986) found

that approximately 80% of the turbulent kinetic energy is contained in the the

first eigenmode of the proper orthogonal decomposition. Since we neglect higher-

order modes in this model, the statistics computed with the present model should

provide somewhat low values of the second-order moments of v and w.

The velocities v and w are readily computed from equation 4.2 and the

definition of the streamfunction:

W(ZI Y) = A~ [E - 7r nh W-)+ E7r4jcosh V,~) Vcsin 7

(4.3)

V(Z Y) = Air [7rcosh (nnmn - (Ey- + 1) .-ninh cnnnu lunos (7r ) (4.4)
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The quantities of primary interest are the standard deviations of v and w, as

a function of y. Squaring the expressions for v(z,y) and w(z,y), and averaging

over a wavelength W in the spanwise direction yields:

- A(= ) [ - 2) sinh ( r+ Eirjcosh

v'H Air [(E-L + 1) sinh 7r~ -r ir cosh (7k)]

where the prime superscript stands for the RMS value of the velocity component.

For H = 30, the experimental value of v'(H)/u, is close to 0.875 (figure 12).

This allows us to plot the expressions for w'(y) and v'(y) on figure 11 and 12 for

comparison with experimental results. Considering the crudeness of the model,

the comparison is very good.

The agreement of the calculated value of the spanwise velocity with exper-

imental data is excellent up to y+ = 25. Beyond this distance, the boundary

conditions on top of the domain causes it to cancel at y+ = H. This boundary

condition was chosen ad hoc, to give us the desired counter-rotating vortices.

Obviously, it is not physical. In fact, an attempt to use a different boundary

condition, apparently more physical (zero derivative for the spanwise velocity),

significantly deteriorated the results. Several reasons can be put forward:

* The Stokes approximation does not hold this far from the wall. Any attempt

to correctly model this part of the flow must incorporate convective effects.

" The top boundary condition is the only coupling between the flow in the near

wall region and that in the outer flow. The latter is much more complicated

that can be represented analytically. The large scale motion of the outer

part of the boundary layer acts in a complicated way on the counter-rotating
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vortices. This model assumes that this motion, however, does not have a

direct effect on the motion in the near-wall region.

In the outer region, the influence of the wall weakens considerably, thus

largely reducing the anisotropy present in the near wall region. The fluctuating

velocity components caused by the large scale motion are therefore statistically

very similar in this region. These observations could provide a basis for a

matching between the near-wall region and the outer region.

We now study the behavior of v' and w' as y goes to zero. Developing the

hyperbolic sine and cosine in Taylor series around zero, we find:

W'(Y) = 2AE7r (W) [gi) + 7r (2 L +) (0 g 3( ]
Tefh =AE~r2[() _34]

Therefore this model provides results in agreement with reasoning based on

physical arguments: the spanwise velocity component varies linearly with the

distance from the wall, whereas the normal velocity component varies as its

square. We now non-dimensionaize these expressions with the friction velocity

to get:

V+ -_AE~r2 (v(H)) (L 772 +2

where 7 represents one wall unit.

For H equal to 30 wall units, we find the following expressions:

w+  1.435 10-' y +

V+ -2.82 10 - 3 Y +2
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These expressions provide numerical formulas for the asymptotic behavior of the

spanwise and normal RMS velocities.

4.3 Streamwise Velocity Pattern

The momentum equation in the streamwise direction can be written:

49u 9 au u 1P /a 2 U 492U a 2 U+ +T+ T =(4.5)at ax ay 8z pz \aX 2 a

To non-dimensionalize this equation, we use the mean velocity Ue at the top

edge of the domain, the height H of the domain, and the kinematic viscosity V.

Equation 4.5 may then be rewritten in non-dimensional form:

a9U au au au a9P+ 1 (a2u a2U+ a2U'\
at 9a a a x R~ .a ±y±a }

where the quantities u,v and w now represent the non-dimensionalized velocity

components.

Experimental results (e.g Kline et al., 1967) show that the streamwise extent

of the structures in the viscous sublayer is much larger than their dimensions in

the cross-plane. Therefore we assume that:

a a and a

YX- TY az

We also know that the three components of velocity u, v and w are of the same

order of magnitude at the top boundary. We thus neglect the convection of

streamwise momentum in the streamwise direction:

au au an uuTx << v-.y and w -

The persistence of the streaks observed experimentally also allows us to assume

that the temporal changes caused by the convection of streamwise velocity by
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the crosswise velocity components v and w are much slower than those resulting

from the instability leading to bursting. Therefore we use the stationary values

of v and w calculated in the previous section (equations 4.3 and 4.4). With these

approximations, equation 4.5 becomes:

Ou(y,z,t) _ au(y,z,t) _ (u(y,z,t)

at - v(y,a) ay az

+ I (a2U(YZt) + a2u(YZt))

The term au/at is kept for numerical reasons only. This equation is linear.

Its right-hand side possesses an integrating factor which allows us to simplify it

further:

R,~ =u (Rf vdy) 4 [&R f vd) 9 + (R. f wdz)a [(-R. f wdz)au]

The value of the integrals:

I = J v dy and J= w dz

can be calculated exactly from equations 4.3 and 4.4:

I = A [(-2 - EL) cosh (r-1) + (r- + sinh 7r H V cos 7r)

A E- 7r2Ysinh (7r1 + 7rE-cosh - W V Cos 77r K\ H) HI H Y7rH)J H iwi
Let:

a = C- R . I and 0 = e - R J

The streamwise momentum equation simply becomes:

Ut=1[1a(a uy) 1 a (fu,.) (4.6)
Re, = a ay # az J

which is a variable coefficient form of the two-dimensional heat equation.
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Equation 4.6 is solved numerically using an explicit scheme first order

accurate in time. The spatial derivatives are estimated using central differencing.

The form of a and 8 allows additional simplifications, after discretization:

1 19(Ct U,) -- a,,,+1/ 2  Uij~ - U. ai,,.... 1 /2 (Ui, - Ui,j - >
a ai, k Ay 2  a, Ay 2

From the definition of a, we have:

fij+ 1/2 -R. fy~ v/2 v dy

In the present calculation, this quantity can be computed exactly. In general,

this integral could be approximated by the value of the velocity at (y - Ay/4).

Similar expressions can be derived for the remaining coefficients of equation 4.6.

For simplicity, we define:

-Re l+ A V/2 v dy --R' -a v dy

cl = and a2 =

Re AZ 2  Re Az 2

Equation 4.6 can then be rewritten:

Ut = Q1 Ui,,+l + a2 U 1 j-1 + 61 Ui+lj + 62 Ui-lj

-(a 1 + a 2 + 01 + 02) uij (4.7)

The boundary conditions are as follows:

- at y=0, u= 0.

- at z = 0 and z = W, symmetry condition.

- at y H:
au U 11-,___

Fy V= 1C
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This relation is be easily derived from the logarithmic law.

The initial velocity profile is given by Spalding's law of the wall:

+= U + e-B (e-U+ - 1 - ,U + - (cU+) 2  (KU+) 3

Attempts to use other initial conditions did not affect the solution.

Equation 4.7 with the above boundary conditions possesses a steady solution.

In reality, of course, the three-dimensional velocity profile is strongly inflexional,

both in the normal and in the spanwise direction. This infiexional profile gives

rise to an instability (Swearingen and Blackwelder, 1986), which is often believed

to initiate the bursting sequence. However, the instability takes place at a

distance of about 20 wall units from the wall. Since the assumptions used in the

derivation of the model limit its validity to the viscous sublayer, i.e., well below

the instability region, it seems natural, as a first approximation, to consider only

the steady-state solution of equation 4.7.

Equation 4.7 was solved on the VAX computer of the Garfield Thomas Water

Tunnel. The L 2-norm of the residue was less than 10-10. The solution is plotted

on figure 28. The iso-velocity lines are seen to be lifted away from the wall

between the two vortices, whereas high velocity fluid is pushed toward the wall

on their outer sides.

As in the previous section, applying spanwise averaging allows us to compute

the statistics of the streamwise velocity as a function of the distance from the

wall. The r.aean velocity distribution thus found is shown on figure 8. The

agreement with both experimental and empirical results is very good. Figure 10

shows the distribution of turbulence intensity. The slope at the wall is accurately

predicted, and the peak slightly above y+ =15 is also provided by the model.
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The Reynolds stress distribution is plotted on figure 15 an 1 compared with

experimental and empirical data. The model performs very well in the viscous

sublayer. Beyond y+ =12, it markedly overpredicts the Reynolds stress. As

noted before, the physics of the flow in the buffer layer is not represented in the

model. The random part of the motion, which becomes stronger away from the

wall, is also absent from the model.

The next step of this analysis is to look at the value of the correlation

coefficient R 12 for zero streamwise separation and non-zero radial separation.

The form of the model makes this task trivial. Indeed, it can be shown simply

that the correlation coefficient R 12 calculated using this model is independant

of the radial separation. Recall that the radial component of velocity v(z, y) is

separable in two parts:

v(z,y) = T (y)cos (7r

Then:
R( uy) f ( )v( +Ay)dz

R(2(Y; AY) 1/2 1/2

Substituting the separable form of v, one finds:

2W
R1 2y;y) c u (z, y) cos (ir-I) dz

(f 2 '(Y) dz)/

where C is a constant. This expression is thus independant of the radial

separation Ay.

This result is obviously inaccurate far from the wall, but close examination

of the correlation maps shows that for small radial separations, the correlation

coefficient varies little when the fixed probe is close to the wall. Based on these

observations, we can hypothetize that R 12 in general tends to a non-zero constant

as it approaches the wall.
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4.4 Conclusion

With very little quantitative input, the model presented in this chapter was

able to reproduce accurately many of the features of the wall region. These

results reinforce the picture of the wall region suggested by Bakewell (1966),

Kline et al. (1967), and many others. The presence of pairs of counter-rotating

vortices is enough to explain the form of the single-point statistics in the wall

region.
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Chapter 5

CONCLUSIONS AND RECOMMENDATIONS

FOR FURTHER STUDIES

5.1 Summary

Measurement of the two-point correlation R 12 (y; Ax, Ay) has been made in

a fully developed turbulent pipe flow at a Reynolds number slightly below 9000.

The high viscosity of glycerine allowed a detailed investigation of the near-wall

region. To accomplish the measurements, an LDV system was constructed in

which the streamwise velocity was measured by a forward scatter system and the

radial velocity was measured by a fiber-optics, backscatter system.

Measurements of the one-point velocity statistics were in excellent agreement

with previous investigations of the wall region. The two-point correlation

measurements are new, since previous investigators were not able to measure

R 12 in the wall region. The effect of velocity bias on R12 was examined, and was

found to be small in the conditions of this experiment. A simple model of the

flow based on previous experimental results was devised.

5.2 Conclusions

Our results show the existence of elongated structures in the near-wall region,

typically a few hundred wall units in length. These structures were found to fill

the entire wall region up to y+ = 64. They are inclined at an angle to the wall.

The structures close to the wall lie almost parallel to it, while those away from

the wall are at a steeper angle.
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The correlation contours can not be explained by the presence of two-

dimensiona! structures lying in the plane of the contour maps. The fact that

the correlation coefficient is maximum for a non-zero separation distance can

only be explained by the presence of three-dimensional structures. A simple

explanation, in agreement with previous studies of the wall region, suggests the

existence of horseshoe vortices in the wall region. These structures dominate

the wall region, with a correlation coefficient between the streamwise and the

radial velocity which can be as large as 60%. The interaction between the tip

of the vortex and the wall induces the vortex tip to move away from the wall.

At the same time, the horseshoe vortex induces a flux of fluid between its legs,

which produces strong fluctuations both in the streamwise and radial velocity

components. The correlation measurements do not reveal whether this motion

is away or toward the wall. Previous studies, however, (e.g., Willmarth and Lu,

1972) show that the distribution is skewed toward the uplift of low velocity fluid

from the wall. This observation thus corresponds to a motion of the vortex tip

away from the wall. This three-dimensional motion results in a large value of the

correlation coefficient R 12 when the probe measuring the streamwise velocity is

between the legs of the vortex, and the probe measuring the radial velocity is at

its tip.

The maximum value of the correlation appears for positions of the fixed probe

from y+ = 9 to y+ = 12 and positions of the moving probe around y+ = 25.

Following the previous interpretation, the location of the maximum value of the

correlation is also that of the vortex tip. In this region, the strong mean velocity

gradient present in the sublayer, which has strengthened the wall vortices by

stretching, is becoming much weaker. It thus loses its ability to counteract

viscous forces and the vortices begin to weaken. It is of interest to note that
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the corresponding position of the fixed probe, slightly above y+ = 10, is also

equal to the position of maximum prodiction of turbulent kinetic energy.

The value of the correlation for zero separation-a non-dimensionalized form

of the Reynolds stress-is smaller than the maximum value of the correlation

coefficient. It thus appears that the Reynolds stress is just a by-product of the

horseshoe vortices. Application of the Biot-Savart law (e.g., Perry and Chong,

1982) would seem more relevant here than direct modeling of the Reynolds stress.

In particular, one-point turbulence models, which have been built on data from

homogeneous turbulent flows, do not seem appropriate in the near-wall region.

To test the interpretation of the two-point velocity correlation, a simple

deterministic model of the flow in the near-wall region was devised. The flow in

the cross-plane was modeled as a pair of counter-rotating vortices. The convective

terms were dropped in the v- and w- momentum equations. Exact analytical

expressions were thus obtained for the spanwise and normal velocity. These

expressions were substituted in the streamwise momentum equation from which

all nonlinear terms had been dropped. This equation for the streamwise velocity

was solved numerically. Based on the observations by Kline et al. (1967) that the

spanwise location of the streaks is random, statistics were constructed by using

spanwise averaging. One point statistics, including all first-order and second

order statistics were calculated and agreement with experimental data is excellent

as far as 20 wall units from the wall. These results thus support the picture of

the counter-rotating vortices embedded in the near-wall region.

These findings are of fundamental interest for the understanding of the

processes of energy transfer in the wall region. The Reynolds stress term

-pu-' appearing in the Reynolds-averaged equations is usually interpreted as
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a transport term, but there is no rationale for its presence, except the academic

argument that it is the result of averaging the nonlinear Navier-Stokes equations.

The approach we have followed in this study allows us to give a precise physical

meaning to the Reynolds stress. We have been able to identify the eddies which

carry the momentum across the wall region, and to understand the way these

eddies affect the one-point statistics.

5.3 Recommendations for further studies

This study has been carried out at one particular value of the Reynolds

number. It would be interesting to study the effect of the Reynolds number on

the structures found in the wall region. Presumably, the scaling of the bursting

frequency with inner variables tends to show that these eddies scale on inner

variables. However, one should be cautious with using arguments implicitely

based on the Taylor hypothesis, and this claim should be verified experimentally.

The question of the origin of the horseshoe vortices is also of fundamental

interest. Several theories exist. Some of them attribute their generation to the

pressure field from the flow in the outer region. Others see them as a secondary

instability of the flow in the buffer layer. The role of pressure in the generation

process should be investigated in detail. Time-space correlations of pressure-

velocity in the viscous sublayer may reveal interesting features of the flow.

The role of the horseshoe vortices in the near-wall turbulent processes seems

to be considerable. It would therefore be of particular interest to study their

dynamics. It has been suggested that the flow in the wall region lies on a

low-dimensional attractor (Aubry et al., 1988). There are good arguments

supporting this hypothesis. The most convincing argument may be the existence
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scale, energetic structures, which tends to agree with a deterministic picture of

the flow. Inner scaling of the bursting frequency also supports this hypothesis.

Experimental studies, using the techniques developed for the study of low-

dimensional dynamical systems are necessary to clarify these ideas.

Turbulence control and drag-reduction are two areas of great technological

interest. Although some success has been achieved in the control of free shear

layers, equivalent success in wall bounded flows is not likely in the foreseeable

future. In the area of drag reduction, in spite of good practical results-drag

reduction of almost 90% have been obtained in pipes--our understanding of the

phenomena is still very limited. Obviously, our ability to control or manipulate

turbulent boundary layers depends crucially on our ability to understand how

turbulence is generated in the wall region. As in free shear flows, experiments

where the turbulent boundary layer is manipulated carefully could allow us to

learn more about the turbulent processes, and in particular the flow in the near-

wall region.
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APPENDIX A

THE LDV SYSTEM

A.1 The Fixed Probe System

A.1.1 Operating Principle

The three-component LDV system of the Thomas Garfield Water Tunnel is a

standard Thermo-Systems Inc. two-colour, five-beam backwar' -scatter system.

Data acquisition and reduction is accomplished through three counter-processors

linked to an IBM PC-AT. We use the blue line and the green line of an 8 W

Argon-ion laser from Spectra-Physics.

The multi-line Argon laser beam is separated into a blue beam (488 nm)

and a green beam (514.5 nm) with - pair of dispersion prisms. The blue beam

is further split into two beams for the measurement of the streamwise velocity

component, while the green ,'>nm is *nlit into three beams for the measurement

of the remaining two orthogonal components. The five beams are focused to the

measurement point using a single lens.

The two blue beams lie in the horizontal plane. In order to remove directional

ambiguity from the measurement, one of the beams is frequency-shifted by

passing it through a 40 MHz Bragg cell. Therefore the signal generated by a

particle passing through the control volume has a frequency of 40 MHz ± fDi,

where fD, is the Doppler frequency corresponding to the streamwise velocity of

the particle:

dl
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and d, is the fringe spacing. The output from the photomultiplier is passed

through an electronic module which removes the 40 MHz part of the signal. Since

counter-processors can only identify positive frequencies, further downmixing is

necessary. Several frequencies are available between 2 kHz and 10 MHz. We

chose the frequency which gave us the highest data rate, i.e. 2 MHz. The

downmixed signal was then sent to the counter-processor for burst detection and

determination of the Doppler frequency.

The green color is used for the measurement of the circumferential and radial

components of velocity. The circumferential component is perpendicular to the

optical axis, while the radial component is along the optical axis. The setup for

the measurement of the circumferential component is similar to the one used for

the measurement of the streamwise component, except that the two beams used

for this operation lie in the vertical plane. The top beam is passed through a

60 MHz Bragg cell, while the bottom beam is passed through a 40 MHz Bragg

cell. The signal generated by a particle passing through the control volume has a

frequency of 100 MHz ± fD2, where fD2 is the Doppler frequency corresponding

to the circumferential velocity u2 . The photomultiplier output is passed through

an electronic module which removes the 100 MHz part of the signal, downmixes

the Doppler frequency with a 2 MHz frequency and sends it to a second counter-

processor.

The measurement of the radial component of velocity involves a third green

beam, which is aligned with the optical axis of the system. The radial component

is measured as the vector difference between the component of velocity given by

the combination of the top and center beams, and that given by the center and



112

bottom beams (A.1). Since the center beam is not frequency-shifted, the signal

generated by the combination (top + center) beams has a frequency:

ft, = 60 MHz + U3 sin ki/) (a.1)

where Ot, is the angle between the top and center beams, and dt, is the

corresponding fringe spacing. Since, when the system is properly aligned,

Otc = cb = 0, the fringe spacings dtc and d~b are equal to d3 . Therefore the two

fringe patterns cause the same Doppler frequency:

d3

Substitution into equation (a.1) gives:

ftc = 60 MHz + fD3 sin(¢/2)

Similarly, the signal corresponding to the combination (center + bottom) beams

has a frequency:

feb = 40 MHz - fD3 sin(4/2)

The difference between these two signals is:

20 MHz + 2 fD3 sin(4/2) = 20 MHz + f (a.3)

This signal is passed through an electronic module which removes the 20 MHz

part of the signal, downmixes it with a 2 MHz frequency and sends it to the

third counter-processor. Therefore the frequency f seen by the processor is not

the Doppler frequency fD3. Combining equations (a.3) and (a.2) yields for the

radial component of velocity the following formula:

f d3
U 3 = s n(-2
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For this reason, it is customary to refer to the on-axis velocity measurement as

a virtual fringe system, with a virtual fringe spacing d, equal to:

dv d3

2 sin(0/2)

A.1.2 Description of the Setup

A complete description of the optical components is given in the TSI system

9100-10 instruction manual. The five beams are focused at the same point using

a lens with a 458 mm focal length. In order to reduce the size of the probe and

thus to increase the positioning accuracy, a beam expansion module was added

to the basic system. The main specifications of the system are the following:

probe diameter ...................... d, 84 kim

probe length .......................... Im = 0.61 mm

beam half-angle ......................... = 7.79'

number of fringes in probe volume... n = 44

When the three-component system was moved to or from another facility

in the laboratory, the optics had to be tuned to position the beams correctly.

Alignment of the beams is a delicate operation, made even more sensitive by

the small size of the probe volume. Two days of work were usually required to

perform this task.

A.2 The Moving Probe System

In order to measure the two-point velocity correlations, a second velocity

probe was necessary. A standard one-component system, coupled to a fiber

optics, was used to perform this task. A beam-splitter on the two-component

arrangement diverted part of the green beam to this one component system,
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which was equipped with a 40 MHz Bragg cell. A TSI coupler was used to focus

the beams onto the extremities of two monomode optical fibers. The probe head

is a cylinder 135 mm long and 25 mm in diameter. In the probe head, lenses are

used to collimate light from the fibers; the collimated laser beams are focused

and crossed with a transmitting lens. Scattered light is collected through the

same lens and focused onto a multimode fiber. The light from this receiving

fiber is coupled into a photodetector. The signal from the photodetector is sent

through an electronic downmixing module, then to a counter-processor. The

main specifications of the system are the following:

probe diameter .................... d,, 110 um

probe length ........................ m 1.6 mm

beam half-angle ................... € = 3.0'

number of fringes in probe volume... n = 25

For the measurement of the two-point correlations, coincidence of the data

in the two probe volumes was necessary. To insure coincidence, the counter-

processor for the fiber-optics LDV was connected as a third component to the

two counter-processors for the two-component LDV. The width of the coincidence

time window was adjusted to about 75% of the size of the smallest burst.

A.3 Data Acquisition System

The counter-processors are fully described in the TSI model 1980B counter-

type Signal Processor instruction manual. A high-pass and a low-pass filter must

be used to eliminate low or high frequency noise from the signal, while a variable

gain control is used to amplify the filtered signal into the range of the burst

detector. When a burst is detected, the processor measures the transit time

taken for a given number of fringe crossings by using a 2 ns resolution clock.
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The number of fringe crossings is preselected manually as 2 M, where Al can

vary between 1 and 5. The transit time is coded in the processor as a number

of clock counts. To minimize contributions from background or phase noise, a

comparison test is performed between the time for N fringe crossings and the

time for N/2 (if M = 1,2 or 4) or 5/8 N (if M = 8,16 or 32) fringe crossings. If

the ratio of the two times is not equal to the ratio of fringe crossings (i.e. 1/2 or

5/8), within a manually preselected percent error, the burst is not accepted. In

addition to providing the fringe crossing time, the 1980B processor provides the

time between data points (TBD), also coded as a number of clock counts, with

one count corresponding to a user selectable number of microseconds from 20 to

21 .

These data are transferred in a digital form to an IBM PC-AT microcom-

puter, via a Direct Memory Access port, using a TSI 1998A Interface. For the

transfer, the number of clock counts A"., is coded in 16-bit words. Bits 0 to

11 are occupied by the mantissa Nm, while bits 12 to 15 are occupied by the

exponent N,. Calculation of the number of clock counts involves the following

transformation:

N,. = Nm 2 N-

For multicomponent systems, a slave interface can be added to the 1998A

interface for each additional channel. This allows data from up to three additional

processors to be transferred to the computer. An adjustable coincidence time

window in the 1998A interface is used to insure that the data from different

processors originated from the same particle.

Data acquisition is controlled from the computer keyboard. The data

acquisition software can handle up to 8000 points per channel, with a maximum
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of 3 channels. Accepted data are saved on a 30 MB hard-disk, and backed up on

high capacity cassettes.
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APPENDIX B

SOURCES OF ERROR FOR THE ON THE ON-AXIS COMPONENT

OF THE THREE-COMPONENT LDV SYSTEM

B.1 Effect of Misalignment

B.1.1 Instantaneous Velocity

The value of the "on-axis" component of velocity is very sensitive to beam

misalignment. In order to provide an estimate of the sensitivity, an analysis

was carried out in which only the center beam was assumed to be misaligned.

The subscripts t, c and b refer to top, center and bottom beam respectively.

The half-angle between the top and bottom beam is called 0. Misalignment of

the center beam in the horizontal plane is characterized by the angle Oh while

misalignment in the vertical plane is characterized by the angle 0. The definition

and orientation of the axes are shown on B.1.

The unit vectors ilt and ii, have the following coordinates:

6t = (0, sin, cosO)

and:

= (0, -sinq5, coso)

The unit vector fii characterizing the direction of the center beam is given by:

1
n. -" \sin20, +# sin2oh + COS 2 0COS2 (-Oshinik, sinkh, COSO, COSdkh)

For simplicity, let:

tic = (cr,Z,')
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Then the unit vector iftC parallel to the bisector of the top and center beams

is:
flic - f

/a 2 +, stn6) 2 + (-y - COSp) 2~ (a -'q5 cos($)

Similarly:

ii,= 1 (-a, -, - sine, -- f - coso)

IV/' + (0 + st'no)2 + (' -COSO)2

Let rct be the angle between ii, and fit. Then:

cosKCt = 3sinO + -ycosk

and the interference pattern created by the top and center beams in the probe

volume has a 'tinge spacing dct:

dot -A
2si, ( 0t/2)

where A is the wavelength of the laser beams.

Similarly, let Xbc be the angle between 6,b and R, Then:

COSr-bc -inf + -ycoso

and:
dbc A

2sin(rcbc/2)

The frequency shift on the top beam being 60 MHz, the signal produced by

the combination of the top and center beams has a frequency:

fht = 60 -ft dtc
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where is the velocity of a particle passing through the probe volume. Similarly,

the signal produced by the combination of the center and bottom beams has a

frequency:

fbc = 40 - cb U
db,

since the frequency shift on the bottom beam is 40 MHz.

Therefore the difference between the two signals is:

,- & =20-U (de° _L_
dot dcb

After downmixing this signal with a 20 MHz signal, the frequency f sent to the

counter-processor is:
f = CT (atcE , ob) (b.1)

dt, dcb

For simplicity, let d, and ii,, be defined by:

1- Le ,-l (b.2)
dt deb

and:

iv d, (atc cb (b.3)
dtc dcb

Then:

f= " (b.4)

As can be seen, d, is the virtual fringe spacing, and 6,, is the direction of the

velocity component actually measured.

Let (A, B, C) be the components of ii,, as defined by equation (b.3). Then

from equation (b.4) the measured frequency is:

AU + BV + CW (b.5)f = d, (.5
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If the misalignment of the beam is not taken into account, the on-axis velocity

component is computed as:

Wm = f dm (b.6)

where the subscript m stands for measured quantities, and dm is equal to d,

when Oh and ;t are zero:
_ A

4sin2(€/2)

Substituting for the value of f in equation (b.6) gives:

_ AU+BV+CWWm=dm
dv

Adm U+BdvmV  Cdvm W
dv dv dv,

Therefore:

aW (Oh, Ov) = A d m

b = a-P (Oh, V ) = Bdrm
av= dm

and

C = a- (Oh, Ov) = CdVM
aW dvm

The coefficients a, b and c have been computed as functions of Vh and 4 .

The algebra is painful but straightforward and will not be given here. We define

the coefficients F, and F2 by:

1 - sin%&. sin6-cos! , cosibh eoad'
Fi -X/sin20.,+*in2VCh +Cos 2 €, Cos: 0h

= sin2 Oh + (sinv - sine)2 + (cosk,,cos5h - cosO) 2

Sasin.th sin -coaJCo8I1h coa

F2 -snsin2Vh in b. +coaOhC co8 2 
0.

F2 = sin2b + (sin~h + sine)2 + (Coskhcoslk2 - cosO) 2
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Then a, b and c can be expressed as:

(F 1 + F 2)sintb,

2( cosp)

6 - (F1 + F 2)sinthh - (F1 - F 2)sin6

- coso)

and

(F 1 + F 2 )(cosV)cOS~h - cos6)

/2-(l - cos€)

When 0,, and Th are small, a, b and c can be expanded in terms of V), and

Oh. This results in the following simple expressions:

sino,
a =

2(1 - co s)

b = stfltkh

2(1 - cosO)

and
COSOPCOS~ih - COS4O

C (1 - cosO)

Therefore when 0, and Oh are small, a, b and c are linear functions of the

misalignment angles to first order. As expected, a and b are small, while c is of

order 1.

In the present setup, the half-angle 4 is 7.79', which gives the following

dependancies of a, b and c to the misalignment angles:

a = 54.18sino,,

b = 54.18sinVkh

and

c = 108.4(cos1vkcosPh - 0.997)
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As can be seen, the effect of misalignment is not negligible: a misalignment of

0.25' produces a change in the radial compo ent equal to 24% of the streamwise

velocity!

B.1.2 Effect on Velocity Statistics

It is also of interest to look at the effect of misalignment on the velocity

statistics. The averaging operation being linear, the mean velocity T is affected

in the same manner as the instantaneous velocity W. However, higher-order

moments involving powers of the on-axis component of velocity larger than 1

follow more complicated relations.

The mean part of the on-axis component of velocity is:

wm = au+bv+cw = aub&U+cw

But V and U are zero in the pipe flow, so that:

W = aV

The fluctuating part of the on-axis component of velocity is:

WM = W, - 0, = au + by + cw

The variance of W. can be evaluated:

WM = (au + bv + cw) 2

which yields after some algebra:

W2= a2i_2 + b2;2 + C2w2 + 2acili5

A similar calculation gives the expression for the Reynolds stresses:

uwm = aU2 + cWf-
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VWn = by 2

Equivalent expressions can be found for the third and fourth-order moments.

If no other source of systematic error was involved in the measurements, it would

be possible to compute the coefficient a from the measurement of the mean

velocity alone:
WMn

a--

In a laminar flow, no other coefficient can be deduced. In a turbulent flow, the

coefficient b can be computed from the measurement of vwm:

b -- W M

The coefficient c can not be computed directly. However, knowledge of a and b

is enough to compute the misalignment angles Oh and 0, This in turn allows

calculation of c.

B.2 Influence of the Beam Angle on the Accuracy of the On-axis Component

This analysis is based on a study by Neti and Clark (1979) for the on-

axis component of a three-component LDV system. Their measurement of the

circumferential and on-axis velocity components was achieved by using two pairs

of beams of orthogonal linear polarizations.

The present beam setup for the measurement of the circumferential and radial

component of velocity is shown on A.1. In the ab, ne of frequency shift, the

expressions for the circumferential and on-axis velocity components are:

V = VCoSa
(b.7)

w = Vsina
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where a is the angle between the velocity vector f' and the axis normal to the

optical axis of the LDV.

The measured velocities V1 and V2 are related to 17 by the relations:

V1 = Vcos(a - 0/2)

(b.8)
V 2 = Vcos(a - 0/2)

Eliminating V between (b.7) and (b.8) gives the following expression for w:

VI - V2
2sin(0/2)

Assuming that the relative accuracy of V1 and V2 is the same, given by 4v
the relative accuracy of the on-axis component is:

dw dV
w VI - V2

dV
2wsin(0/2)

In the five-beam two-colour setup:

dV = dv

Therefore:
dw dv
w 2wsin(4/2)

dv v 1

v w 2sin(4/2)

In many flows, the order of magnitude of v/w is one. If the beam angle 4 is

small, the previous expression reduces to:

dw 1 dv

w Cv
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This shows that the relative uncertainty on the on-axis velocity component is

proportional to that for the other components, but more important, it is inversely

proportional to the beam-angle. For the on-axis component to have an accuracy

of the same order of magnitude as on the other components, the beam angle

should be at least 30. This in turn creates geometrical problems-access through

a wind-tunnel window might not be possible-.

In the case of the TSI system, the angle 4 is 7.790 . Therefore the relative

uncertainty on the on-axis component is:

dw dv
- 9.55-

W V

Thus the relative accuracy on the on-axis component of velocity is found

theoretically to be about ten times smaller than for the other components.
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APPENDIX C

EFFECT OF VELOCITY BIAS ON MEASUREMENT

OF TWO-POINT CORRELATION COEFFICIENT

C.1 Introduction

Since velocity bias was uncovered by McLaughlin and Tiederman in 1973,

it has been a subject of controversy. Velocity bias arises in laser Doppler

velocimetry because the statistics for the particle arrival times and that for

the fluid velocity are not independent. More particles with large velocity are

swept past the probe volume than particles with low velocity. Thus velocity

statistics calculated directly as averages of particle velocities are skewed towards

high values.

Velocity bias has been analyzed in numerous papers, both theoretically and

experimentally. McLaughlin and Tiederman (1973) suggested a simple-minded

correction factor when the flow is essentially one-dimensional. Dimotakis (1975),

Buchhave (1975) and others have given more detailed analyses, taking into

account all three components of velocity and the ellipsoidal shape of the probe

volume. However, the effect of the bias on two-point correlations has never been

considered.

The present analysis is based on a paper by Edwards (1981) who looked at

the case of an LDV processor with a fixed sampling rate. This case can be easily

extended to the case of a multicomponent system, with a coincidence window of

given width AT.
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C.2 Theory

To keep the calculations tractable, a number of assumptions have been

made. The major assumption is that the flow we analyze is one-dimensional,

with velocity U = U(x,t). This assumption reduces the number of random

variables by a factor of three, and avoids the complication introduced by a three-

dimensional probe volume.

We measure the velocity at two points A and B and we assume that the

two probe volumes are similar. The length of each probe volume is din, and the

minimum distance that a particle must travel inside a probe volume for a valid

measurement is!. The parameter I is sometimes called the effective probe length,

and is a function of the frequency shift f.. If df is the fringe spacing, then the

relative velocity of the particle with respect to the fringes is:

UeI = U + df fo

The time between 2 fringe crossings is:

At = df

and the time to cross the minimum number of fringes Nmi, necessary for

validation is:
Nmi, df

T U+dff

Therefore the minimum distance that the particle must travel for validation is:

I=TxU= Nmi.df U

U + dff.

In the absence of frequency shifting, we fi:ld the classical result that I is

independent of U:

I = Nmin df
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On the contrary, if the frequency shifting is very large, so that df f, >> JU,

then we have:

] U

The size of the coincidence window Ar is usually chosen equal to the shortest

mean burst duration of the two probes. In the following we will assume that the

two mean velocities VA and UB are equal to U, so that Ar is unambiguously

defined as:
d m

r =--(c.2)U

We assume that a measurement is made if at least one particle passes through

each probe volume during Ar. This assumption neglects all other data rejection

devices in the system. If several particles pass in a probe volume during Ar, we

assume that only the first one is validated.

Let p be the mean concentration of particles per unit length. The",iarticle

arrival times follow a Poisson distribution, so that the expected number of

particles in any given length L is just pL. The probability of having at least

one particle in L is (1 - exp(-pL)). The length of fluid swept through I during

Ar is (IUIAr - 1), since a particle must traverse 1 to be measured. Therefore the

probability of getting one measurement in probe volume A during Ar is:

PA (U) = 1 - eXp[-p(IUIAr - 1)] if IUI > 1/Ar; (c.3)1 0 otherwise.

As a preliminary discussion of the cause of velocity bias, let us consider the

case of a one-dimensional system. The PdF PA is represented in C.1 (dashed



131

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ D

U U I I I I 5 I I U I I I I 5 I I

- --

Lfn

(n)vd



132

line) together with a velocity PdF (solid line). Velocity bias arises because the

probability of measuring a velocity U is given by:

PM( P(U) PA (U)

fR P(U) PA (U) dU

When PA(U) is close to 1, its effect on P(U) is small. When PA(U) is small,

P(U) is strongly affected. To reduce bias, one thus tries to make PA(U) as close

as possible to 1 wherever P(U) is significantly larger than zero.

Two parameters characterize the PdF PA: the width w of the bin where

PA is equal to zero, and the rate at which it reaches its asymptotic value 1.

Using c.1, we can see that w = i/Ar is inversely proportional to the frequency

shift. Therefore large values of the frequency shift contribute to reduce the dead

zone. This phenomenon is usually referred to as fringe bias, and is caused by

the fact that particles moving at the velocity of the fringes do not produce any

signal. Increasing the frequency shift to values which make the fringe velocity

much larger than the particle velocity suppresses this problem. This leads to a

practical estimate of the minimum frequency shift to choose: we must choose f.

so that JUl is always greater than I/Ar. Substituting for the value of I given by

equation c.1 into equation c.3, we get:

Nj., U

Ar df

Therefore a safe choice for the frequency shift would be for example:

2 (N,, U,,.)G=2\AT df

Equation c.3 shows that the rate at which PA reaches its asymptotic value 1

depends on the particle concentration p. If we define the non-dimensional number

, = p din, which represents the average number of particles in the probe volume,
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then a high value of n, corresponds to a high data rate. Equation c.3 shows that

when n, is large, PA(U) reaches its asymptotic value 1 faster than when it is

small. Thus its interaction with the PdF P(U) is reduced and bias is reduced:

high data rates diminish the effect of bias. This phenomenon corresponds to

velocity bias.

We now assume that the positions of the particles in the fluid are random, so

that the particle arrival time statistics for the two probe volumes are independent.

The probability of finding at least one particle in each probe volume is:

PAB(UA,UB) = PA(UA)PB(UB)

Consequently the probability of measuring a velocity UA in probe A and a

velocity UB in probe B is given by:

Pm(UAUB) = P(UA, UB) PA (UA) P(UB)

ffR, P(UA,UB) P(UA) P(UB) dUA dUB

where P(UA, UB) is the joint PdF of the velocities UA and UB, at points A and

B respectively.

If P(UA,UB) were known, it would be possible to compute P,(UA,UB)

and the exact two-point velocity statistics. In practice, this would require the

measurement of all three components of velocity at both points, which does not

seem feasible for the moment.

In the following, we will assume the form of the joint PdF P(UA, UB) and

observe the effect of bias on the correlation coefficient. The simplest joint PdF

is the bivariate normal PdF. We define UA and UB as the instanta:ieous velocity
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fluctuations at A and B, and u' and u' as their RMS values. Then the bivariate

normal PdF P(UA, UB) is defined as:

-2(1-Y& r()P(UA,UB) =x- r )le D - )

where r is the velocity correlation coefficient.

C.3 Discussion

C.2 shows a contour map of the PdF PAB(UA, UB) and P(UA, UB). As can be

seen, many of the features of this plot are similar to those of its one-dimensional

version in C.1, and, due to the fact that the two distributions PA and PB are

independent, the same remarks concerning the effects of particle concentration

and frequency shift can be made. The new parameter appearing in this plot is

the correlation coefficient r. We now focus our attention on the influence of r

on the measured mean velocity and correlation coefficient. In the following, we

assume that the frequency shift is large, so that 1 in the equations for PA and

PB is neglected.

A program was written to study the effect of the correlation coefficient on

bias. The non-dimensional parameters governing the problem are the mean

number of particles in each probe volume, the turbulence intensities and the

correlation coefficient, i.e., 4 quantities in all. To simplify the presentation, we

assumed that the turbulence intensity at both points was the same and equal to

30%, approximately equal to its largest value in a turbulent boundary layer. C.3

shows the mean velocity bias AU, = (Urn - U) at point A, non-dimensionalized

by u', .ersus the correlation coefficient r, for several values of n,. The subscript

m is used for measured quantities, as opposed to exact quantities appearing
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without subscript. C.4 presents the correlation coefficient bias (rm - r), versus

the correlation coefficient r, for several values of n,.

The numerical results can be interpreted with the help of C.2. The influence

of particle concentration on bias is as expectel. fnc mean velocity and the

correlation coefficient are barely affected for values of nv larger than 10. This

corresponds to the situation when there is almost always a particle in the probe

volume. In this case, the processor is saturated and data acquisition is made

at a constant rate. This corresponds to the case where PAB(UA, UB) reaches

its asymptotic value 1 very fast, and thus interacts very little with the velocity

PdF P(UA, UB). Note, however, than the situation when there is more than one

particle in the probe volume is not desirable if data processing is being made

with counter processors.

As the particle concentration is reduced, the bias increases because PAB

reaches I more slowly and the two distributions PAB and P interact more.

Although the calculations in figures C.3 and C.4 indicate that the bias reaches

an asymptote for very small values of the particle concentration, these results

should be taken with care because they involve numerical integrations of very

small quantities (of the order of e- 10 ), and accuracy of the numerical routines

may not be sufficient.

The increase of the mean velocity bias with the correlation coefficient is due

to the fact that as r increases, the two distributions P and PAB become more

closely aligned with each other. When the correlation coefficient is equal to -1, the

velocity PdF P(UA, UB) lies entirely on the line parallel to the line UA = -UB,

and passing through (UU). The PdF P is symmetric with respect to the line

UA = UB, like PAB, and the product of the two is also symmetric with respect to
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this line. Thus the value of the mean velocity is not affected. Physically, this is

because the velocity fluctuation at one point is always the exact opposite of that

at the other point. Thus when the data rate is low at one point, it is high at the

other point, and vice and versa, so that the coincident data rate is a constant

on the average, and there is no bias. As the correlation coefficient increases, the

PdF P becomes less linear and expands in the direction of the line UA = UB.

Beyond a certain value of the correlation coefficient, the two distributions begin

to interact, and bias affects the mean velocity. As r continues to increase, the

PdF PAB contaminates the PdF P more. The part of P(UA, UB) closer to the

origin is more affected than the part away from the origin, so that the mean

velocity is pushed away from the origin. ysically, what happens when r = 1 is

equivalent to what would happen in the one-dimensional case, presented in a

previous section.

As can be seen on C.4, the measured correlation coeffficient is not affected by

bias at r = -1, 0 and 1. At -1 and 1, the PdF P is zero everywhere except in the

direction of the lines UA = UB or UA = -UB. Therefore there is no interaction

with the PdF PAB. In effect, the PdF is one-dimensional, and multiplication

by another PdF leaves it one-dimensional. The correlation coeffiecient therefore

remains equal to 1 or -1. The absence of bias on rm at r = 0 is due to the fact

that the measured PdF P, is the product of two two-dimensional PdF's, each

with a zero correlation coefficient. Thus it has a correlation coefficient equal

to zero. Since the bias is zero for r=1, -1 and 0, it must reach its maximum

for intermediate values of the correlation coefficient, around r = -0.5 and 0.5.

Around, r = -0.5, multiplication of P by PAB makes the final distribution

leaner in the direction of the line UA = -UB, thus reinforcing the effect of the

correlation coefficient. Around r = 0.5, the effect is the same, but this time, it



140

acts in the direction normal to that characterized by the correlation coefficient,

so that r, is smaller than r.In both cases, the absolute change of the correlation

coefficient remains less than 4%.

C.4 Conclusions

It is clear that a high data rate is best for the measurement of the two-point

correlation coefficient. This ensure that no bias will affect the results.

If the data rate achieved is small (typically nv < 1), the bias will affect

the statistics of the velocity. The effect on the mean velocity can be significant,

typically up to half the RMS value of the velocity. The effect on the correlation

coefficient remains relatively small. For the case considered in these calculations,

the error is not larger than 0.04, which is well within experimental error. The

effect is larger for values of the correlation coefficient close to 0.5, but negligible

for small values of the correlation coefficient. Thus the general shape of the

structures identified by contour plots of the correlation coefficient should not be

affected.


